Teaching rates of reaction post-16: next steps

Education in Chemistry

September 2021
rsc.li/3jVOWVq

These steps follow those from the graphical representations in the Teacher checklist, which accompanied the first Teaching rates of reaction post-16 article (rsc.li/3yLp1nU).

Introducing the rate equation

Students should be familiar with transforming a relationship that shows a proportional relationship into an equation by including a constant of proportionality.

Rate $\alpha[x]^{n}$ becomes Rate $=k[x]^{n}$

Where k is the rate constant. This is only a constant when the temperature remains the same or when a catalyst doesn't affect the rate.

Calculating the rate constant
Now take $\log _{10}$
Log rate $=\log k+n \log [x]$
This equation form can be compared to $y=m x+c$

Log rate	$=$	logk	+	$n \log [x]$
y	$=$	c	+	$m x$

So, plotting log $[x]$ against log rate allows the gradient n (order) to be calculated. The intercept is logk which is important for calculating the Ea.

Calculating the activation energy (E_{a})
Applying the Arrhenius equation
$k=A e^{-E a / R T}$
Take natural logarithms and plot Ink versus 1/T

