

Teaching rates of reaction post-16: next steps

Education in Chemistry September 2021 rsc.li/3jV0WVq

These steps follow those from the graphical representations in the Teacher checklist, which accompanied the first Teaching rates of reaction post-16 article (<u>rsc.li/3yLp1nU</u>).

Introducing the rate equation

Students should be familiar with transforming a relationship that shows a proportional relationship into an equation by including a constant of proportionality.

Rate $\propto [x]^n$ becomes Rate = $k[x]^n$

Where k is the rate constant. This is only a constant when the temperature remains the same or when a catalyst doesn't affect the rate.

Calculating the rate constant

Now take Log₁₀

Log rate = logk + nlog[x]

This equation form can be compared to y = mx + c

Log rate	=	logk	+	nlog[x]
У	=	С	+	тх

So, plotting *log[x]* against *log rate* allows the gradient *n* (order) to be calculated. The intercept is *logk* which is important for calculating the *Ea*.

Calculating the activation energy (E_a)

Applying the Arrhenius equation

$k = Ae^{-Ea/RT}$

Take natural logarithms and plot Ink versus 1/T

