Michael Grove and Samantha Pugh explore the ‘mathematics problem’ faced by chemistry students
For those working within the disciplines of mathematics, physics and engineering in higher education, the ‘mathematics problem’ is all too familiar. The term describes the well-documented issues associated with the lack of mathematical preparedness of students as they begin their university studies. While there has been considerable community-wide and institutional activity to tackle the problem, for example the development of mathematics support centres and a range of online learning materials, there is evidence that the problem may now be different in nature, so a different solution is sought.
While the root causes of the mathematics problem in mathematics, physics and engineering have been identified, in chemistry, the situation has never been entirely clear. In 2007, the then chief executive of the Royal Society of Chemistry Richard Pike attributed the issue to students not studying mathematics beyond GCSE level. However, a year later, the Physical Sciences Subject Centre review of the student learning experience in chemistry, indicated that there was a mismatch between staff and student views of their preparation prior to starting a chemistry degree, even among the growing proportion who have studied A-level mathematics. Staff complained that students were ill-prepared in mathematics, but more than half the students surveyed said that the mathematics they did at school or college prepared them very well for their chemistry courses.
A serious attempt to understand the mathematics problem within chemistry has recently been undertaken by the Higher Education Academy. Their staff and student survey report attributed the problem to a number of issues including lack of confidence, a gap between studying mathematics and entering the degree programme, more mathematics than expected in the degree programme and a lack of explanation of the relevance of mathematics to chemistry. Perhaps most striking was that despite citing difficulties, the majority of students reported that they had not accessed the additional mathematics support that was available.
Michael Grove and Samantha Pugh explore the ‘mathematics problem’ faced by chemistry students, considering the research, findings and how these underlying problems could be tackled through developing supporting resources for chemistry students.
Thanks for using Education in Chemistry. You can view one Education in Chemistry article per month as a visitor.
Registration is open to all teachers and technicians at secondary schools, colleges and teacher training institutions in the UK and Ireland.
Get all this, plus much more:
Already a Teach Chemistry member? Sign in now.
Not eligible for Teach Chemistry? Sign up for a personal account instead, or you can also access all our resources with Royal Society of Chemistry membership.