Determine the activation energy for a reaction

Education in Chemistry

October 2018 rsc.li/2OM1O0Z Emily Seeber

Determine the activation energy for the reaction between bromide ions and bromate(V) ions

Objective: Use the Arrhenius equation to determine the activation energy of a reaction

Safety

- Wear a lab coat and gloves, and use eye protection.
- Phenol is corrosive and toxic.
- Sulfuric acid solution is an irritant.
- Potassium bromate(V) is oxidising.

Preliminary testing

Trial	Instructions	Observations	Inferences
1	Pipette 10 cm ³ of phenol solution and 10 cm ³ of bromide and bromate(V) solution into a boiling tube. Place into a water bath at approximately 70°C.		
2	 Pipette 10 cm³ of phenol solution and 10 cm³ of bromide and bromate(V) solution into a boiling tube. Place into a water bath at approximately 70°C. Pipette 5 cm³ of sulfuric acid solution into a boiling tube. Place into the water bath. When warm, pour the sulfuric acid into the other boiling tube. 		
3	 Pipette 10 cm³ of phenol solution and 10 cm³ of bromide and bromate(V) solution into a boiling tube. Add 4 drops of methyl red indicator. Place into a water bath at approximately 70°C. Pipette 5 cm³ of sulfuric acid solution into a boiling tube. Place into the water bath. When warm, pour the sulfuric acid into the other boiling tube. 		

Preliminary analysis

- 1. Write an equation for the reaction occurring in Trial 2 to form the white precipitate.
- 2. Write an equation for the redox reaction occurring between bromide ions and bromate(V) ions.
- 3. The methyl red indicator is decolourised by the reaction with bromine. Why does it not decolourise instantly?

Investigation

- Complete a number of experiments to study the rate of this redox reaction at a range of temperatures.
- Design a suitable table of results.
- Plot a graph of $\frac{1}{r}$ (with T in Kelvin) against $\ln t$ (with t in seconds).
- Starting from the Arrhenius equation, $k = Ae^{-\frac{E_a}{RT}}$, show mathematically that $-\frac{E_a}{RT}$ is the gradient of the line.

• The gradient of the line from your graph is $-\frac{E_a}{RT}$. Calculate the activation energy of the reaction.