Scaffolding to prevent cognitive overload

Education in Chemistry September 2019 rsc.li/2T1s9pM

This series of questions starts with a fully scaffolded question; in the following questions scaffolding is removed.

Coping with tritration

1. 25.00 cm³ of NaOH is just neutralised by 23.45 cm³ of 0.100 mol/dm³ HCl. Calculate the concentration of NaOH.

a.	Symbol equation	HCI + NaOH → NaCI + H ₂ O
b.	Stoichiometric ratio	HCI : NaOH = :
C.	Volume of substances in dm ³	V(NaOH) = / 1000 = dm ³
		$V(HCI) = / 1000 = dm^3$
d.	Amount of 'known' substance	$n(HCI) = c(HCI) \times V(HCI)$
		= x = mol
e.	Amount of 'unknown' substance	n(NaOH) = n(HCI) x ratio
		= X
		= mol
f.	Concentration of 'unknown substance'	c(NaOH) = n(NaOH) / V(NaOH)
		=/
		= mol/dm ³

2. 20.00 cm^3 of NaOH is just neutralised by 17.00 cm³ of 0.100 mol/dm³ H₂SO₄. Calculate the concentration of NaOH.

a.	Symbol equation	$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$
b.	Stoichiometric ratio	H ₂ SO ₄ : NaOH = :
C.	Volume of substances in dm ³	V(NaOH) = dm ³
		$V(H_2SO_4) = $ $/ 1000 = $ dm^3
d.	Amount of 'known' substance	$n(H_2SO_4) = c(H_2SO_4) \times V(H_2SO_4)$
		= x = mol
e.	Amount of 'unknown' substance	$n(NaOH) = n(H_2SO_4) x ratio$
		= x
		= mol
f.		

3. 25.00 cm³ of NaOH is just neutralised by 31.50 cm³ of 0.100 mol/dm³ HNO₃. Calculate the concentration of NaOH.

a.	Symbol equation	HNO ₃ + NaOH → NaNO ₃ + H ₂ O
b.	Stoichiometric ratio	HNO ₃ : NaOH =::
C.	Volume of substances in dm ³	V(NaOH) = / 1000 = dm ³
		V(HNO ₃) = / 1000 = dm ³
d.	Amount of 'known' substance	$n(HNO_3) = c(HNO_3) \times V(HNO_3)$
		= x = mol
e.		
f.		

4. 40.00 cm³ of HCl is just neutralised by 36.70 cm³ of 0.150 mol/dm³ KOH. Calculate the concentration of HCl.

a.	Symbol equation	HCI + KOH → KCI + H ₂ O
b.	Stoichiometric ratio	HCI : KOH = :
C.	Volume of substances in dm ³	V(KOH) = dm ³
		V(HCI) = / 1000 = dm ³
d.		
e.		
f.		

5. 40.00 cm^3 of H_2SO_4 is just neutralised by 36.70 cm³ of 0.150 mol/dm³ KOH. Calculate the concentration of H_2SO_4 .

a. Symbol equation	$H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$
b. Stoichiometric ratio	H ₂ SO ₄ : KOH = :
C.	
d.	
e.	
f.	

6. 40.00 cm³ of Ba(OH)₂ is just neutralised by 28.00 cm³ of 0.100 mol/dm³ HCl. Calculate the concentration of Ba(OH)₂.

a. Symbol equation	2HCl + Ba(OH) ₂ → BaCl ₂ + 2H ₂ O
b.	
C.	
d.	
e.	
f.	

7. 35.00 cm^3 of Ba(OH)₂ is just neutralised by 21.35 cm³ of 0.100 mol/dm³ H₃PO₄. Calculate the concentration of Ba(OH)₂.

8. 41.40 cm³ CH₃COOH is just neutralised by 32.05 cm³ of 0.250 mol/dm³ NaOH. Calculate the concentration of CH₃COOH.

9.	12.05 cm³ of citric acid (tribasic) is just neutralised by 12.50 cm³ of 0.050 mol/dm³ potassium hydroxide. Calculate the concentration of citric acid.
10.	33.50 cm³ of ammonia solution is just neutralised by 23.50cm³ of 0.125 mol/dm³ sulphuric acid. Calculate the concentration of ammonia solution.

Answers

- 1. 0.0938 mol/dm³
- 2. 0.170 mol/dm³
- 3. 0.126 mol/dm³
- 4. 0.138 mol/dm³
- 5. 0.0688 mol/dm³
- 6. 0.0350 mol/dm³
- 0.0915 mol/dm³
 0.194 mol/dm³
- 9. 0.0173 mol/dm³
- 10. 0.175 mol/dm³