Artificial membrane harvests light

0214EiC-NEWSSciResearchmembrane300m

Source: © Nature Publishing Group

Photochromic compound acts as proton pump

Photosensitive compounds built into an artificial membrane can capture light energy in the same way as proton pumps found in biological cells. Scientists in Switzerland say their system could open up new approaches to solar power generation and artificial photosynthesis.

In cells, proton pumps are transporter proteins that ferry hydrogen ions across a membrane. This creates a proton gradient where the pH and charge differ significantly on either side of the membrane, which acts as a store of electrochemical energy.

A team led by Eric Bakker at the University of Geneva has created a proton pump using a photochromic spiropyran compound, which switches between different forms in response to light. 

This article provides a link to coverage by Chemistry World

Thanks for using Education in Chemistry. You can view one Education in Chemistry article per month as a visitor. 

A photograph of a teacher standing in a white lab coat, speaking with a class of children in a laboratory, is superimposed on a colourful background. Text reads "Teach Chemistry means support for classroom and staff room".

Register for Teach Chemistry for free, unlimited access

Registration is open to all teachers and technicians at secondary schools, colleges and teacher training institutions in the UK and Ireland.

Get all this, plus much more:

  • unlimited access to resources, core practical videos and Education in Chemistry articles
  • teacher well-being toolkit, personal development resources and online assessments
  • applications for funding to support your lessons

Already a Teach Chemistry member? Sign in now.

Not eligible for Teach Chemistry? Sign up for a personal account instead, or you can also access all our resources with Royal Society of Chemistry membership.