Nanoporous anodes charge up

c4ee00508b-ga300tb

If only their components were cheaper

Scientists in China and the US say a new anode material they have created represents a significant step forward in the development of long-life stationary lithium-ion batteries for large-scale energy storage systems.

Lithium-ion batteries are one of the most effective rechargeable batteries thanks to their high energy density and low environmental impact. However, the performance of current lithium-ion batteries, which use graphite as the anode material, cannot satisfy requirements of large-scale systems that could support smart electricity grids linked with renewable sources. Their charging rate is limited because at voltages required for a fast charge, lithium deposition, or plating, occurs, which can result in the battery short circuiting.

Yong-Sheng Hu of the Beijing National Laboratory for Condensed Matter Physics and coworkers hope to overcome this with their TiNb2O7 anodes. 

This article provides a link to coverage by Chemistry World

Thanks for using Education in Chemistry. You can view one Education in Chemistry article per month as a visitor. 

A photograph of a teacher standing in a white lab coat, speaking with a class of children in a laboratory, is superimposed on a colourful background. Text reads "Teach Chemistry means support for classroom and staff room".

Register for Teach Chemistry for free, unlimited access

Registration is open to all teachers and technicians at secondary schools, colleges and teacher training institutions in the UK and Ireland.

Get all this, plus much more:

  • unlimited access to resources, core practical videos and Education in Chemistry articles
  • teacher well-being toolkit, personal development resources and online assessments
  • applications for funding to support your lessons

Already a Teach Chemistry member? Sign in now.

Not eligible for Teach Chemistry? Sign up for a personal account instead, or you can also access all our resources with Royal Society of Chemistry membership.