
## **Computational Chemistry: Answers**





[2]

[3]

## (b) (i) a ≈ 109.5°; b ≈ 118°; c ≈ 107°

(ii) This is done on the basis of Valence Shell Electron Pair Repulsion (VSEPR) theory.

The carbon atom at *a* is making four single covalent bonds (it has four bonding pairs of electrons around it) and these are arranged tetrahedrally.

The carbon atom at *b* is making two single and one double covalent bonds (it has three groups of electrons around it) and these are arranged in a trigonal planar arrangement. The group of four electrons in the double bond repels the other electrons more than an electron pair and therefore angle *b* is 'squeezed down' to a little less than  $120^{\circ}$ .

The nitrogen atom at c is making three single covalent bonds and also has a lone pair (it has four electrons pairs around it). The electron pairs are arranged tetrahedrally but the lone pair repels the other electrons more than a bonding pair. This 'squeezes down' angle c to a little less than 109.5°. [3]

- All the hydrogen atoms that are part of OH groups and the hydrogen that is part of the NH group.
  [2]
- d) All the oxygen atoms and the nitrogen atom. [2]
- e) Fluorine, oxygen and nitrogen [3]
- f) A hydrogen bond can form between a hydrogen atom that is covalently bonded to an electronegative atom (F, O or N) and another electronegative atom. [2]
- g) (i) The COOH group



|    | (ii)                                                                                                                                                                      | The NH group            | [2]        |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|
| h) | (i)                                                                                                                                                                       | The H of the COOH group |            |
|    | (ii)                                                                                                                                                                      | The N of the NH group   | [2]        |
| i) | A lone pair of electrons [7                                                                                                                                               |                         | [1]        |
| j) | All the atoms bonded directly to an oxygen atom or the nitrogen atom are polarised $\delta^+$ . All the oxygen atoms and the nitrogen atom are polarised $\delta^-$ . [2] |                         | sed<br>[2] |

RSC Advancing the Chemical Sciences