1. a)

(b) (i) $a \approx 109.5^{\circ} ; b \approx 118^{\circ} ; c \approx 107^{\circ}$
(ii) This is done on the basis of Valence Shell Electron Pair Repulsion (VSEPR) theory.
The carbon atom at a is making four single covalent bonds (it has four bonding pairs of electrons around it) and these are arranged tetrahedrally.
The carbon atom at b is making two single and one double covalent bonds (it has three groups of electrons around it) and these are arranged in a trigonal planar arrangement. The group of four electrons in the double bond repels the other electrons more than an electron pair and therefore angle b is 'squeezed down' to a little less than 120°.

The nitrogen atom at c is making three single covalent bonds and also has a lone pair (it has four electrons pairs around it). The electron pairs are arranged tetrahedrally but the lone pair repels the other electrons more than a bonding pair. This 'squeezes down' angle c to a little less than 109.5 . [3]
c) All the hydrogen atoms that are part of OH groups and the hydrogen that is part of the NH group.
d) All the oxygen atoms and the nitrogen atom.
e) Fluorine, oxygen and nitrogen
f) A hydrogen bond can form between a hydrogen atom that is covalently bonded to an electronegative atom (F, O or N) and another electronegative atom.
g) (i) The COOH group
h) (i) The H of the COOH group
(ii) The N of the NH group
i) A lone pair of electrons [1]
j) All the atoms bonded directly to an oxygen atom or the nitrogen atom are polarised δ^{+}. All the oxygen atoms and the nitrogen atom are polarised δ^{-}.

