Measuring an equilibrium constant

In this experiment you will be using your microscale titration apparatus to determine the equilibrium constant for the reaction between silver(I) and iron(II) ions:

$$Ag^{+}(aq) + Fe^{2+}(aq) \rightarrow Ag(s) + Fe^{3+}(aq)$$

Instructions

- **1.** Using a 2 cm³ pipette transfer 2 cm³ each of the 0.10 mol dm⁻³ silver nitrate solution and 0.10 mol dm⁻³ iron(II) sulphate solution to the flask and stopper it so that it is air-tight. Shake the flask and leave undisturbed overnight.
- **2.** Set up the microscale titration apparatus (see 'Apparatus and techniques for microscale chemistry' handout).
- 3. Fill the apparatus with potassium thiocyanate solution (see 'Element Solutions' handout).
- **4.** Using a 1 cm³ pipette, transfer 1 cm³ of the solution to a 10 cm³ beaker, trying not to disturb the silver precipitate.
- **5.** Using the microscale titration apparatus titrate with potassium thiocyanate solution. A permanent red colour marks the end-point.
- **6.** Repeat the titration and calculate the average of your titres.

Calculations

1. The purpose of this experiment is to calculate the equilibrium constant K_c in the expression:

$$K_{c} = \frac{[Fe^{3+}(aq)]_{eq}}{[Ag^{+}(aq)]_{eq}[Fe^{2+}(aq)]_{eq}}$$

- 2. First, work out the initial concentrations of both Ag⁺ (aq) and Fe²⁺(aq) in the reaction vessel.
- **3.** Write the equation for the titration reaction and then use it to calculate [Ag⁺]_{eq} from your titration results
- **4.** Since the initial concentrations of both Ag(I) and Fe(II) are equal, it follows that their concentrations at equilibrium are also equal. Therefore you also know $[Fe^{2+}]_{eq}$.
- **5.** Before you can calculate K_c you need to know the concentration of iron(III) at equilibrium, [Fe³⁺(aq)]_{eq}. This is equal to the initial concentration of Fe²⁺(aq) minus the concentration of Fe²⁺(aq) at equilibrium. Hence calculate K_c .

Health & Safety

Students must wear eye protection.

Iron(II) sulfate, 0.1 mol dm⁻³, FeSO₄.7H₂O (aq) and Potassium thiocyanate solution 0.020 mol dm⁻³ are of low hazard.

Sulfuric acid, $0.5 \text{ mol dm}^{-3} \text{ H}_2 \text{SO}_4(aq)$ is of low hazard (if accurately made up. It becomes irritant at 0.51 mol dm^{-3})

Silver nitrate solution 0.10 mol dm⁻³ is IRRITANT.

Credits

© Royal Society of Chemistry

Health & safety checked May 2018

Page last updated August 2018

