Drugs and acid dissociation constants

Ionisation of drug molecules

Most drugs ionise in aqueous solution. ${ }^{1}$ They are weak acids or weak bases. Those that are weak acids ionise in water to give acidic solutions while those that are weak bases ionise to give basic solutions.

$$
\begin{array}{cc}
\hline \text { Drug molecules that are weak acids } & \text { Drug molecules that are weak bases } \\
\hline \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} & \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
\text {where, } \mathrm{HA}=\text { acid (the drug molecule) } & \text { where, } \mathrm{B}=\text { base (the drug molecule) } \\
\mathrm{H}_{2} \mathrm{O}=\text { base } & \mathrm{H}_{2} \mathrm{O}=\text { acid } \\
\mathrm{A}^{-}=\text {conjugate base (the drug anion) } & \mathrm{OH}^{-}=\text {conjugate base (the drug anion) } \\
\mathrm{H}_{3} \mathrm{O}^{+}=\text {conjugate acid } & \mathrm{BH}^{+}=\text {conjugate acid } \\
\hline
\end{array}
$$

Acid dissociation constant, K_{a}

For a drug molecule that is a weak acid

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

The equilibrium constant for this ionisation is given by the equation

$$
\text { equilibrium constant }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

where $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],[\mathrm{A}],[\mathrm{HA}]$ and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ are the concentrations at equilibrium.
In a dilute solution the concentration of water is to all intents and purposes constant. So the equation is simplified to:

$$
K_{a}=\frac{\left[H_{3} O^{+}\right]\left[A^{-}\right]}{[H A]}
$$

where K_{a} is the acid dissociation constant for the weak acid
Also, $\mathrm{H}_{3} \mathrm{O}^{+}$is often written simply as H^{+}and the equation for K_{a} is usually written as:

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
$$

Values for K_{a} are extremely small and, therefore, $\mathrm{p} K_{a}$ values are given (similar to the reason pH is used rather than $\left[\mathrm{H}^{+}\right]$.

$$
p K_{a}=-\log _{10} K_{a}
$$

The relationship between $\mathrm{p} K_{\mathrm{a}}$ and pH is given by the Henderson-Hasselbalch equation:

$$
\begin{equation*}
p H=p K_{a}-\log \frac{[H A]}{\left[A^{-}\right]} \tag{or}
\end{equation*}
$$

$$
p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
$$

This relationship is important when determining $\mathrm{p} K_{a}$ values from pH measurements.

Base dissociation constant, \boldsymbol{K}_{b}

For a drug molecule that is a weak base:

[^0]$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-}
$$

Following the same logic as for deriving K_{a}, base dissociation constant, K_{b}, is given by:

$$
K_{b}=\frac{\left[B H^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]} \quad \text { and } \quad p K_{b}=-\log K_{b}
$$

Ionisation of water

Water ionises very slightly.

$$
\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

The equilibrium constant for this ionisation is given by the equation:

$$
\text { equilibrium constant }=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

where $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ are the concentrations at equilibrium.
The concentration of water is to all intents and purposes constant. So the equation is simplified to give the ionic product of water, K_{w} :

$$
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

Its value is temperature dependent. At $25^{\circ} \mathrm{C}$,

$$
\begin{gathered}
K_{w}=1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \\
p K_{w}=-\log _{10} K_{w}
\end{gathered}
$$

The relationship between the ionic product of water, the acid dissociation constant and the base dissociation constant is:

$$
\begin{gathered}
K_{w}=K_{a} \times K_{b}=1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\text { at } 25^{\circ} \mathrm{C}\right) \\
p K_{w}=p K_{a}+p K_{b}=14
\end{gathered}
$$

So, to convert $\mathrm{p} K_{b}$ to $\mathrm{p} K_{a}$ the equation to use is:

$$
p K_{a}=14-p K_{b}
$$

For convenience, $\mathrm{p} K_{a}$ values are usually quoted for all drugs, whether they are acidic or basic.

Some experimentally determined values ${ }^{2}$

Acidic drugs	$\boldsymbol{K}_{\mathbf{a}} / \mathrm{mol} \mathrm{dm}^{-3}$	$\mathrm{p} \boldsymbol{K}_{\boldsymbol{a}}$	Basic drugs	$\boldsymbol{K}_{\mathbf{a}} / \mathrm{mol} \mathrm{dm}^{-3}$	$\mathrm{p} \boldsymbol{K}_{\mathbf{a}}$
Penicillin G	2.0×10^{-3}	2.7	Tetracycline	5.0×10^{-4}	3.3
Aspirin	3.3×10^{-4}	3.5	Adrenaline	2.5×10^{-9}	8.6
Fenoprofen	3.2×10^{-5}	4.5	Diphenhydramine	1.0×10^{-9}	9.0
Phenobarbital	3.9×10^{-8}	7.4	Ephedrine	2.5×10^{-10}	9.6

Finding out

Show how the relationship $K_{w}=K_{a} \times K_{b}$ may be derived.
Hint: Consider these two equations:

$$
\begin{aligned}
H A+\mathrm{H}_{2} \mathrm{O} & \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
A^{-}+\mathrm{H}_{2} \mathrm{O} & \leftrightarrow \mathrm{HA}+\mathrm{OH}^{-}
\end{aligned}
$$

[^1]
[^0]: ${ }^{1}$ Ionisation of drug molecules.

[^1]: ${ }^{2}$ See Ionisation of drug molecules for structures.

