Determining the $\mathrm{p} K_{\mathrm{a}}$ of 2-hydroxybenzoic acid

Student worksheet

Health and safety note

Wear eye protection and ensure no naked flames. $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution is an irritant. 95% ethanol is highly flammable. 2-hydroxybenzoic acid and 95% ethanol are both harmful.

Principle

2-hydroxybenzoic acid is a weak acid

Figure 1 2-hydroxybenzoic acid ionises in aqueous solution. It is a weak acid.

This may be represented:

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\text {or, more simply } \\
\mathrm{HA} \leftrightarrow \mathrm{~A}^{-}+\mathrm{H}^{+}
\end{gathered}
$$

Its acid dissociation constant, K_{a}, is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

often written simply as:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

The $\mathrm{p} K_{\mathrm{a}}$ value is given by:

$$
\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}
$$

Taking logarithms, the following relationships are derived

$$
\begin{gathered}
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \\
\text {or } \\
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

When the acid is 'half-neutralised',
$\left[\mathrm{A}^{-}\right]=[\mathrm{HA}]$, and $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$.

Figure 2 A graph of pH for the titration of a weak acid with sodium hydroxide solution.

By titrating a solution of the 2-hydroxybenzoic acid against a strong alkali, such as sodium hydroxide solution, the pH at the half-way point can be determined and this gives the $\mathrm{p} K_{\mathrm{a}}$ of aspirin.
2-hydroxybenzoic acid and sodium hydroxide react in a 1:1 mole ratio:

$$
\mathrm{HOCOC}_{6} \mathrm{H}_{4} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{HOCOC}_{6} \mathrm{H}_{4} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

Equipment and materials

- Balance
- $50 \mathrm{~cm}^{3}$ burette
- $250 \mathrm{~cm}^{3}$ beaker
- Glass stirring rod
- $10 \mathrm{~cm}^{3}$ and $100 \mathrm{~cm}^{3}$ measuring cylinders
- Spatula
- pH probe and pH meter
- 2-hydroxybenzoic acid - Harmful
- 95\% ethanol - Highly flammable, Harmful
- $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution Irritant

Method

1. Fill a burette with $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.
2. Weigh 0.28 g of 2-hydroxybenzoic acid into a $250 \mathrm{~cm}^{3}$ beaker. Add $10 \mathrm{~cm}^{3}$ of 95% ethanol, Stir with a glass rod and when the solid has dissolved add $90 \mathrm{~cm}^{3}$ of deionised water. Stir the mixture until it is homogeneous.
3. Place a pH probe in the solution and connect it to a pH meter.

Note: The pH probe should have been calibrated using suitable buffer solutions.
4. Add $2 \mathrm{~cm}^{3}$ quantities of sodium hydroxide solution from the burette to the beaker, stirring well between additions and recording the pH .
5. Near the end-point the pH begins to rise rapidly. So after you have added $18 \mathrm{~cm}^{3}$ of sodium hydroxide solution begin adding it in $0.5 \mathrm{~cm}^{3}$ portions. After about $22 \mathrm{~cm}^{3}$ start adding in $2 \mathrm{~cm}^{3}$ portions again. Continue until total of $36 \mathrm{~cm}^{3}$ has been added.

Processing data

1. Plot a graph of pH against volume of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution added.
2. From the graph, calculate the end-point of the titration.
3. Check this against the expected value by calculating the number of moles of 2 -hydroxybenzoic acid used (relative molecular mass of 2-hydroxybenzoic acid = 138) and, therefore, the volume of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution needed to react with it in a $1: 1$ mole ratio.
4. At the half-way point to the end point, $\left[\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right]$.

From the graph, estimate the pH at the half-way point of the titration and, therefore, a value for the $\mathrm{p} K_{\mathrm{a}}$ of 2-hydroxybenzoic acid.
5. Calculate K_{a} of 2-hydroxybenzoic acid.

