Determining the $\mathrm{p} K_{\mathrm{a}}$ of aspirin

Student worksheet

Health and safety note

Wear eye protection and ensure no naked flames. $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution is an irritant. 95% ethanol is highly flammable. Aspirin and 95% ethanol are both harmful.

Principle

Aspirin is a weak acid. It partially ionises in water:

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

and its acid dissociation constant, K_{a}, is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

often written simply as:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

The $\mathrm{p} K_{\mathrm{a}}$ value is given by:

$$
p K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}
$$

Taking logarithms, the following relationships are derived

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \quad \text { or } \quad \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

When the acid is 'half-neutralised', $\left[\mathrm{A}^{-}\right]=[\mathrm{HA}]$, and $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$.
By titrating a solution of the aspirin against a strong alkali, such as sodium hydroxide solution, the pH at the half-way point can be determined and this gives the $\mathrm{p} K_{\mathrm{a}}$ of aspirin.
Aspirin and sodium hydroxide react in a $1: 1$ mole ratio:

$$
\mathrm{CH}_{3} \mathrm{OCOC}_{6} \mathrm{H}_{4} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{OCOC}_{6} \mathrm{H}_{4} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

Equipment and materials

- Balance
- $50 \mathrm{~cm}^{3}$ burette
- $250 \mathrm{~cm}^{3}$ beaker
- Glass stirring rod
- $10 \mathrm{~cm}^{3}$ and $100 \mathrm{~cm}^{3}$ measuring cylinders
- Spatula
- pH probe and pH meter
- Aspirin - Harmful
- 95% ethanol - Highly flammable, Harmful
- $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution Irritant

Method

1. Fill a burette with $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.
2. Weigh 0.36 g of aspirin into a $250 \mathrm{~cm}^{3}$ beaker. Add $10 \mathrm{~cm}^{3}$ of 95% ethanol, Stir with a glass rod and when the solid has dissolved add $90 \mathrm{~cm}^{3}$ of deionised water. Stir the mixture until it is homogeneous.
3. Place a pH probe in the solution and connect it to a pH meter. Note: The pH probe should have been calibrated using suitable buffer solutions.
4. Add $2 \mathrm{~cm}^{3}$ quantities of sodium hydroxide solution from the burette to the beaker, stirring well between additions and recording the pH .
5. Near the end-point the pH begins to rise rapidly. So after you have added $18 \mathrm{~cm}^{3}$ of sodium hydroxide solution begin adding it in $0.5 \mathrm{~cm}^{3}$ portions. After about $22 \mathrm{~cm}^{3}$ start adding in $2 \mathrm{~cm}^{3}$ portions again. Continue until total of $36 \mathrm{~cm}^{3}$ has been added.

Processing data

1. Plot a graph of pH against volume of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution added.
2. From the graph, calculate the endpoint of the titration.
3. Check this against the expected value by calculating the number of moles of aspirin used (relative molecular mass of aspirin $=180$) and, therefore, the volume of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution needed to react with it in a 1:1 mole ratio.
4. From the graph, estimate the pH at the half-way point of the titration. This gives a value for the $\mathrm{p} K_{\mathrm{a}}$ of aspirin.
5. Calculate the K_{a} of aspirin.

Volume of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution added
Figure Illustrative titration graph for aspirin against sodium hydroxide solution.

