Distribution of 2-hydroxybenzoic acid between water and an organic solvent

Teacher and technician sheet

Health and safety note

Make sure that students wear eye protection and that there are no naked flames. $10 \% \mathrm{v} / \mathrm{v}$ ethyl ethanoate in hexane is highly flammable and harmful.

Equipment and materials

Each student or group of students will require:

Distribution

- Organic solvent ($10 \% \mathrm{v} / \mathrm{v}$ ethyl ethanoate in hexane) Highly flammable, Harmful
- Range of buffer solutions, each containing $0.2 \mathrm{~g} \mathrm{dm}^{-3}$ 2-hydroxybenzoic acid
pH's of buffer solutions: 1.0, 1.6, 2.3, 2.8, 3.2, 4.0, 4.5, 5.1
- Boiling tube with stopper $\times 8$
- $5 \mathrm{~cm}^{3}$ measuring cylinder $\times 2$

Colorimetric analysis

- Colorimeter and suitable filter (green/yellow)
- $2 \mathrm{~cm}^{3}$ pipette
- $5 \mathrm{~cm}^{3}$ measuring cylinder $x 2$
- $10 \mathrm{~cm}^{3}$ measuring cylinder
- $0.025 \mathrm{~mol} \mathrm{dm}^{-3}$ iron(III) nitrate solution

Since many measurements need to be made, students could work in groups, sharing the workload.

Preparation of solutions

2-hydroxybenzoic acid buffered solutions Weigh 0.100 g of 2-hydroxybenzoic acid (Harmful) into a $100 \mathrm{~cm}^{3}$ beaker. Add $5 \mathrm{~cm}^{3}$ of 95% ethanol (Highly flammable, Harmful) and swirl the contents of the beaker to dissolve the solid. Add $20 \mathrm{~cm}^{3}$ of the buffer solution and swirl the beaker again to mix the contents. Transfer quantitatively to a $500 \mathrm{~cm}^{3}$ volumetric flask and make up to volume with buffer solution. The concentration of this solution is $0.2 \mathrm{~g} \mathrm{dm}^{-3} 2$-hydroxybenzoic acid.
$0.025 \mathrm{~mol} \mathrm{dm}^{-3}$ iron(III) nitrate solution Weigh 10 g iron(III) nitrate-9-water (Oxidising, Irritant) into a $250 \mathrm{~cm}^{3}$ beaker. Add about $50 \mathrm{~cm}^{3}$ of deionised water and swirl the flask until the solid dissolves. Transfer quantitatively to a $1 \mathrm{dm}^{3}$ measuring cylinder and make up to volume with deionised water. Mix thoroughly.

Buffer solutions ${ }^{1}$

Commercially-available buffer tablets may also be used. However, if they are not to make buffer solutions at a range of pH values you will need:

- $100 \mathrm{~cm}^{3}$ measuring cylinders (number depends on which buffer solutions are being made), pH probe and meter.

[^0]- $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of: hydrochloric acid; potassium chloride (14.9 g in $1 \mathrm{dm}^{3}$ of deionised water); ethanoic acid (12.0 g glacial ethanoic acid (Corrosive) in $1 \mathrm{dm}^{3}$ of deionised water); sodium hydroxide (8 g sodium hydroxide (Corrosive) in $1 \mathrm{dm}^{3}$ of deionised water).

Volumes of component solutions (each $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$) used to make $100 \mathrm{~cm}^{3}$ of buffer.

$\mathbf{H C l}$	$\mathbf{K C l}$	$\mathbf{C H}_{3} \mathbf{C O O H}$	$\mathbf{N a O H}$	$\mathbf{H}_{\mathbf{2}} \mathbf{}$	$\mathbf{p H}$ of buffer solution
75	25				1.0
10	25			65	1.6
2	25			75	2.3
		100			2.8
		10		90	3.2
		50	10	40	4.0
		50	25	25	4.5
		50	40	10	5.1

In each case the pH value is approximate and the actual value should be measured using a pH probe and meter.

[^0]: ${ }^{1}$ P. S. Marrs, Journal of Chemical Education, 2004, 81, 870.

