Problem Based Practical Activities
Problem 2: A little gas

Developed by Dr Catherine Smith, RSC School Teacher Fellow at the University of Leicester 2011-2012
This resource was produced as part of the National HE STEM Programme
Problem 2:
A little gas

Curriculum links;
ideal gases, Maxwell-Boltzmann distribution, \(y = mx + c \)

Practical skills;
using computer simulations, graph plotting and interpretation

The students are contacted to write a review on the use of computer simulations in sixth form chemistry for the student chemistry magazine “The Mole”. They are directed to a simulation on gas properties produced by PhET (University of Colorado at Boulder) and asked to use the simulation to determine the identity of the “light” and “heavy” gas used in the simulation.
Problem 2: A little gas

Pre-Lab questions

(Remember to give full references for any information beyond A-level that you find out)

1. The Maxwell-Boltzmann distribution is used to describe the energies of particles in a gas at a certain point in time. It applies only to ideal gases. Describe the key assumptions that distinguish an ideal gas from a real gas.

2. The diagram opposite represents a Maxwell-Boltzmann distribution curve for the particles in a sample of gas at a certain temperature, T;

 ![Maxwell-Boltzmann distribution curve](image)

 a) Indicate on the curve above an approximate value for:
 i. the most probable energy of a gas particle
 ii. the average energy of a gas particle in this system

 b) The Kinetic Theory of Gases describes equations for calculating particle speeds based on their energies. Since there is a distribution of particle speeds in the system, scientists use different measures for the particle speed. Two such measures are the average speed of a gas particle and the most probable speed of a gas particle.

 The average speed of a gas particle in a system is given by the equation;

 \[
 \text{Average speed}, \, v = \sqrt[8]{\frac{RT}{\pi M}}
 \]

 i. Define all the symbols in this equation including UNITS
 ii. A similar equation allows the most probable speed of a gas particle to be calculated. Define this equation.

3. In chemistry, many functions can be represented by a straight line graph of the type \(y = mx + c \) where;
 'x' and 'y' are the coordinates of the points that satisfy the function
 'm' is the gradient of the straight line graph, and
 'c' is the 'y intercept' of the straight line graph

 In the equation for the average speed of a gas particle given in question 2 b), if you plotted a graph of \(\sqrt{T} \) (x-axis) against the average speed, \(v \) (y-axis), what value would the gradient of your graph be equal to?
Problem 2: A little gas

Introduction

Dear sixth form student,

A large amount of experimental chemistry is performed using computer simulations. As part of an article on this topic for the Royal Society of Chemistry student magazine “The Mole,” I would like you to review an excellent simulation package on Gas Properties produced by PhET from the University of Colorado at Boulder. A quick internet search of <PhET simulation properties of gases> will take you to the simulation which can either be downloaded or run online.

When you first open the simulation I suggest you have a play and investigate the interactivity available. You will notice that you can either add a light gas or a heavy gas to the chamber. For the review, I would specifically like you to use the simulation to determine the identity of the light gas and the heavy gas by calculating their molecular masses. By doing this and showing your method and working, I hope that the review will give students a starting point for how the simulation can be used. This will help to draw the reader in. A few ideas following on from this for alternative investigations the reader can carry out will add depth to the article and turn it into an excellent review for either students or teachers.

For publication, the review will need to be no longer than 500 words in length and follow the Guidelines for Publication as detailed below:

- **Text** All text is in the Calibri font, left aligned, black. Line spacing is ‘exactly’ 14 point. The magazine body text is in two columns but tips/did you know/interesting facts can be added in an out-side sidebar on each page

- **Headings** All **Headings** are in the bold Calibri font, black
 - **MAIN CHAPTER HEADINGS** are in capitals, bold, 13 point italic
 - **Sub headings** are 11 point, lower case, bold
 - **Image captions** are 9 point, lower case, bold, italic

- **Paragraphs** Paragraphs are 11 point, regular
 - Headings and paragraphs are followed by an extra six points

I look forward to receiving your reviews,

Many thanks,

[Signature]
1. In an ideal gas, the following assumptions must be true;
 • The volume occupied by the particles is negligible relative to the volume of the container
 • The forces between the gas particles are negligible

 In addition, in an ideal gas it is assumed that;
 • The particles behave as rigid spheres
 • Gases are made up of particles which are in constant random motion in straight lines
 • All collisions (particle-particle and particle-container) are perfectly elastic (there is no loss of
 kinetic energy during the collision)
 • The pressure of the system is a result of collisions between the particles and the walls of the
 container
 • The temperature of the gas is proportional to the average kinetic energy of the particles

2. a)

2. b) i.

 Average speed, \(\bar{v} = \sqrt{\frac{8RT}{\pi M}} \)

 \(v \) = Average speed, m s\(^{-1}\)
 \(R \) = Ideal gas constant, \(8.314 \) J K\(^{-1}\) mol\(^{-1}\)
 \(T \) = Temperature, K
 \(M \) = molar mass, kg mol\(^{-1}\)

 ii.

 Most probable speed, \(v_p = \sqrt{\frac{2RT}{M}} \)

 \(v_p \) = Most probable speed, m s\(^{-1}\)
 \(R \) = Ideal gas constant, \(8.314 \) J K\(^{-1}\) mol\(^{-1}\)
 \(T \) = Temperature, K
 \(M \) = molar mass, kg mol\(^{-1}\)

3. \[v = \sqrt{\frac{8R}{\pi M}} \times \sqrt{T} \]

 \(\therefore \) A plot of \(v \) (y-axis) against \(\sqrt{T} \) (x-axis) would give a straight line with gradient \(\frac{8R}{\pi M} \). Using this
 gradient a value for the molar mass of the gas, \(M \) can be calculated.
Teacher and Technician Pack

Problem 2: A little gas

Proposed method

Using the pre-lab questions, students identify that a graph of Average Velocity vs √Temperature will give a straight line with gradient \(\frac{8 \sqrt{\pi}}{\pi M} \) from which the molar mass of each gas can be determined.

Theory

\[
\text{Average speed} / \text{ms}^{-1} = y = 27.512 x \\
\text{Average speed} / \text{ms}^{-1} = y = 72.793 x
\]

\[
\therefore 27.512 = \frac{8 \sqrt{\pi}}{\pi M} \quad \therefore 72.793 = \frac{8 \sqrt{\pi}}{\pi M}
\]

\[
\therefore M = 0.0279 \text{ kg mol}^{-1} \text{ or } 27.9 \text{ g mol}^{-1}
\]

\[
\therefore \text{The heavy gas is nitrogen, } \text{N}_2
\]

\[
\therefore M = 0.0279 \text{ kg mol}^{-1} \text{ or } 27.9 \text{ g mol}^{-1}
\]

\[
\therefore M = 3.99 \times 10^{-3} \text{ kg mol}^{-1} \text{ or } 3.99 \text{ g mol}^{-1}
\]

\[
\therefore \text{The light gas is helium, } \text{He}
\]

* The students may choose to investigate the speed of the gas particles when there is more than one particle in the system. If this is the case, a distribution of gas speeds is given and the gas behaviour is not ideal. The students will need to decide how best to record the distribution and interpret it.

Results

<table>
<thead>
<tr>
<th>Temperature / K</th>
<th>√ Temperature / K</th>
<th>Average speed / ms^-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10.0</td>
<td>274.85</td>
</tr>
<tr>
<td>200</td>
<td>14.1</td>
<td>389.53</td>
</tr>
<tr>
<td>300</td>
<td>17.3</td>
<td>476.48</td>
</tr>
<tr>
<td>400</td>
<td>20.0</td>
<td>549.92</td>
</tr>
<tr>
<td>500</td>
<td>22.4</td>
<td>615.23</td>
</tr>
<tr>
<td>600</td>
<td>24.5</td>
<td>674.08</td>
</tr>
<tr>
<td>700</td>
<td>26.5</td>
<td>727.79</td>
</tr>
<tr>
<td>800</td>
<td>28.3</td>
<td>778.20</td>
</tr>
<tr>
<td>900</td>
<td>30.0</td>
<td>825.33</td>
</tr>
<tr>
<td>1000</td>
<td>31.6</td>
<td>869.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature / K</th>
<th>√ Temperature / K</th>
<th>Average speed / ms^-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10.0</td>
<td>727.43</td>
</tr>
<tr>
<td>200</td>
<td>14.1</td>
<td>1030.09</td>
</tr>
<tr>
<td>300</td>
<td>17.3</td>
<td>1260.64</td>
</tr>
<tr>
<td>400</td>
<td>20.0</td>
<td>1456.30</td>
</tr>
<tr>
<td>500</td>
<td>22.4</td>
<td>1626.97</td>
</tr>
<tr>
<td>600</td>
<td>24.5</td>
<td>1782.69</td>
</tr>
<tr>
<td>700</td>
<td>26.5</td>
<td>1925.87</td>
</tr>
<tr>
<td>800</td>
<td>28.3</td>
<td>2059.07</td>
</tr>
<tr>
<td>900</td>
<td>30.0</td>
<td>2183.93</td>
</tr>
<tr>
<td>1000</td>
<td>31.6</td>
<td>2302.17</td>
</tr>
</tbody>
</table>

For the light gas;

\[
y = 27.5 x
\]

\[
\therefore 27.5 = \frac{8 \sqrt{\pi}}{\pi M} \quad \therefore 757 = \frac{8 \sqrt{\pi}}{\pi M}
\]

\[
\therefore M = 0.0279 \text{ kg mol}^{-1} \text{ or } 27.9 \text{ g mol}^{-1}
\]

\[
\therefore \text{The light gas is helium, } \text{He}
\]

For the heavy gas;

\[
y = 27.5 x
\]

\[
\therefore 27.5 = \frac{8 \sqrt{\pi}}{\pi M} \quad \therefore 757 = \frac{8 \sqrt{\pi}}{\pi M}
\]

\[
\therefore M = 0.0279 \text{ kg mol}^{-1} \text{ or } 27.9 \text{ g mol}^{-1}
\]

\[
\therefore \text{The heavy gas is nitrogen, } \text{N}_2
\]
Teacher and Technician Pack

Equipment list

Each group will need;

Access to the internet

Or

Access to a computer on which the Gas Properties simulation has been downloaded and saved

At the time of going to print, the URL for the PhET Gas Properties Simulation is;

http://phet.colorado.edu/en/simulation/gas-properties

The simulation was created by;

PhET Interactive Simulations
University of Colorado
http://phet.colorado.edu.