Subject knowledge tests: post-16 chemistry

Test 1: questions

For each question, select the correct answer – A, B, C or D.

1 Identify the correct rate equation for the reaction between calcium carbonate and dilute hydrochloric acid:

2
$$HCl(aq) + CaCO_3(s) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

- A rate = $k [CaCl_2] [H_2O] [CO_2]$
- B The rate equation cannot be identified from the equation for the reaction.
- C rate = $k [HCI]^2 [CaCO_3]$
- D rate = k [HCI] [CaCO₃]

2 Here is the balanced equation for the reaction between hydrogen and nitric oxide:

$$2H_2(g) + 2NO(g) \rightarrow 2H_2O(g) + N_2(g)$$

The rate of reaction was investigated by varying the concentration of the two reactants at 973 K.

[H ₂]	[NO]	rate
mol dm ⁻³	mol dm ⁻³	\times 10 ⁻⁶ mol dm ⁻³ s ⁻¹
0.01	0.01	0.38
0.02	0.01	0.77
0.01	0.02	1.54

What are the orders of reaction with respect to H₂ and NO?

	$[H_2]$	[NO]
Α	2	2
В	1	1
С	1	2
D	2	1

A piece of magnesium is dropped into dilute hydrochloric acid. Hydrogen gas is given off and a solution of magnesium chloride remains. The equation for the reaction is:

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

What particles are present in the reactants and products?

	Mg	HCl	$MgCl_2$	H_2
Α	Atoms	molecules	molecules	molecules
В	Atoms	ions	ions	molecules
С	lons	molecules	molecules	molecules
D	Molecules	ions	ions	molecules

4 In the Haber process, hydrogen and nitrogen react to produce ammonia:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H - ve$

What conditions favour the maximum amount of ammonia being produced?

- A High temperature and high concentration of hydrogen.
- B Low temperature and high concentration of hydrogen.
- C High temperature and high pressure.
- D Low temperature and high pressure.
- Which statement best explains the difference between a "strong" and a "weak" acid or alkali?
 - A A strong acid/alkali is fully ionised when dissolved in water.
 - B A weak acid/alkali does not dissolve easily in water.
 - C A strong acidic/alkaline solution is always very concentrated.
 - D A weak acid/alkali reacts more slowly than a concentrated one.

6 Equilibrium concentrations in mol dm⁻³ at 298 K of the reactants and products in this esterification reaction are shown.

$$CH_3COOH(aq) + C_2H_5OH(I) \rightleftharpoons CH_3COOC_2H_5(aq) + H_2O(I)$$

0.67

0.67

What is the value of the equilibrium constant?

- A 0.2 mol dm^{-3}
- B 0.2
- C 4.1 mol dm⁻³
- D 4.1
- Methane has the chemical formula CH₄. Which is the best explanation of why it is CH₄, not CH₃, CH₂ or CH?
 - A The atoms of carbon and hydrogen want to form a molecule like this.
 - B Carbon must obey the Octet Rule when forming bonds.
 - C This formula is the most energetically favoured arrangement.
 - D This formula satisfies the valencies of carbon and hydrogen.
- What will be observed when propanal and propanone are each warmed gently with Fehling's solution (containing Cu²⁺(aq) and OH⁻(aq))?

Propanal	Propanone

A Blue solution No reaction

B No reaction Brick red precipitate

C Brick red precipitate Brick red precipitate

D Brick red precipitate No reaction

- 9 Why does the value of first ionisation enthalpy increase across a period of the periodic table?
 - A Nuclear charge increases so electrons are held more tightly.
 - B As the number of electrons increases the first is harder to remove.
 - C Inter-atomic bonds increase in strength across the period.
 - D Atomic volume decreases so electrons are held more tightly.
- Here are some lattice formation enthalpy values (kJ mol⁻¹) for oxides of Group 1 metals:
 - Li₂O -2806
 - Na₂O -2488
 - K₂O -2245

What is the best explanation for the change observed in the lattice formation enthalpy value from Li_2O to K_2O ?

- A The ionic radius of the metal cation increases.
- B The ionic radius of the metal cation decreases.
- C Potassium is more reactive than lithium.
- D The potassium oxide lattice is less stable.
- 11 When sodium hydroxide and sulfuric acid react, the equation is:

$$2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$$

In a titration, 25 cm³ sodium hydroxide reacted with 21 cm³ 0.1 mol dm⁻³ sulfuric acid.

What is the concentration of the sodium hydroxide solution?

- A 0.1 × 25 / 1000
- B $21/1000 \times 0.1 \times 2 \times 1000/25$
- C $21/1000 \times 0.1 \times 0.5 \times 1000/25$
- D $0.1 \times 21 / 1000 \times 2 \times 25 / 1000$

- 12 A solution of 1 mol dm⁻³ hydrochloric acid is diluted to 0.01 mol dm⁻³.
 - What happens to the pH value?
 - A Nothing, it would stay the same.
 - B It would increase by 2 pH units.
 - C It would decrease by 2 pH units.
 - D It would increase by 1 pH unit.
- 13 What is a buffer solution?
 - A A solution that reacts with both acids and alkalis.
 - B A fully ionised solution of an acid and an alkali mixed in equal amounts.
 - C A solution of pH 7 that contains approximately equal amounts of acid and alkali.
 - D A solution that maintains relatively constant pH when a small amount of acid or alkali is added.
- 14 What particles are present in hydrochloric acid, HCl(aq)?
 - A H⁺, OH⁻, Cl⁻
 - B HCl, H₂O
 - C H⁺, OH⁻, OCl⁻
 - D H_2O , H_3O^+ , OH^- , CI^-
- 15 Which equation represents the reaction of a Group 2 metal with water?
 - A $M(s) + H_2O(l) \rightarrow MO(aq) + H_2(aq)$
 - B $2M(s) + 2H_2O(I) \rightarrow 2MOH(aq) + H_2(g)$
 - C $M(s) + 2H₂O(I) \rightarrow M(OH)₂(aq) + H₂(g)$
 - D $2M(s) + H_2O(l) \rightarrow M_2O(aq) + H_2(aq)$

The equation for the reaction between hydrated barium hydroxide and ammonium chloride is:

$$Ba(OH)_2.8H_2O(s) + 2NH_4CI(s) \rightarrow BaCl_2(s) + 10H_2O(l) + 2NH_3(g)$$
 $\Delta H + ve$

What does " ΔH +ve" tell you about the rate of reaction?

- A The rate of reaction is slow.
- B The reaction needs a catalyst to make it "go".
- C The activation energy is high.
- D It gives no information about rate of reaction.
- 17 When solid sodium hydrogen carbonate is added to hydrochloric acid, a spontaneous reaction occurs and the temperature drops. The equation for the reaction is:

$$NaHCO_3(s) + HCI(aq) \rightarrow NaCI(aq) + H_2O(I) + CO_2(g)$$

Which of these statements is correct?

- A ΔH is –ve ΔS is +ve
- B ΔH is +ve ΔS is +ve
- C ΔH is -ve ΔS is -ve
- D ΔH is +ve ΔS is 0
- 18 What is the best definition for the term "complex ion"?
 - A central metal atom or ion surrounded by negatively charged ions or neutral molecules each with a lone electron pair.
 - B A central metal cation surrounded by two or more negatively charged ions each with a lone electron pair.
 - C A central metal atom or ion bonded datively to two or more negatively charged ions or molecules.
 - D A central metal cation bonded datively to two or more negatively charged ions.

19 When hydrogen and oxygen gases react, the equation is:

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$$

What volume of oxygen is needed to react with 20 cm³ of hydrogen?

 A_r values: H = 1, O = 16

- A 20 cm³
- B 10 cm³
- C 40 cm³
- D 2 cm^3
- In a closed fizzy-drink bottle an equilibrium position exists between carbon dioxide gas in the head space above the drink and carbon dioxide in the drink itself:

$$CO_2(g) \rightleftharpoons CO_2(aq)$$

The bottle is opened, a drink poured out and the cap replaced. As this is repeated, the drink loses its fizz, becoming flat. Which is the best explanation for this?

- A The equilibrium position moves further to the left.
- B The volume above the drink increases.
- C The volume of drink in which the gas can dissolve decreases.
- D The equilibrium position concentrations decrease as drink is poured out.
- The reaction between calcium carbonate and dilute hydrochloric acid was followed by measuring the volume of carbon dioxide gas produced over time.

Why does the rate slow down?

- A Particles lose energy.
- B Acid is used up.
- C Fewer successful collisions occur.
- D Calcium carbonate is used up.

Which statement is the best definition for first ionisation enthalpy?

First ionisation enthalpy is the energy needed to remove ...

- A ... one electron from an atom.
- B ... one electron from an atom in the gaseous state.
- C ... one electron from every atom in 1 mole of an element.
- D ... one electron from every atom in 1 mole of gaseous atoms of an element.
- In general, raising the temperature increases the rate of reaction. Which statement best explains why this occurs?
 - A The overall amount of energy distributed across the molecules increases.
 - B Molecules move faster because they have increased kinetic energy.
 - C More colliding molecules have the minimum activation energy required to react.
 - D Bonds within molecules break more easily at higher temperatures.

24 What is the systematic name of this compound?

CH₃COH(CH₃)CH₃

- A Methylpropan-2-ol
- B Butan-2-ol
- C 2-Ethylethanol
- D 2-Methylpropanol
- 25 Here are some bond dissociation enthalpies (in kJ mol⁻¹):

$$N \equiv N = +945$$
; $N-H = +391$; $H-H = +436$

What is the enthalpy change for this reaction?

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

A
$$\Delta H_R = +945 + (3 \times 436) - (3 \times 391)$$

B
$$\Delta H_R = +945 + (3 \times 436) - (6 \times 391)$$

C
$$\Delta H_R = -945 - (3 \times 436) + (3 \times 391)$$

D
$$\Delta H_R = -945 - (3 \times 436) + (6 \times 391)$$

Here is the equation for the reaction between two complex ions:

$$Co(H_2O)_6^{2+} + 4CI^- \rightleftharpoons CoCI_4^{2-} + 6H_2O$$

PINK BLUE

(cobalt(II)(cobalt(II)hexahydratetetrachlorocomplex ion)complex ion)

What will happen if a concentrated solution of chloride ions is added to the reaction at equilibrium?

- A A purple colour is produced.
- B A pink colour is produced.
- C A blue colour is produced.
- D It's impossible to tell without knowing the colour of the equilibrium mixture.

- 27 Which equation represents the lattice enthalpy for the formation of sodium chloride?
 - A $Na^+(s) + Cl^-(s) \rightarrow NaCl(s)$
 - B $Na^+(g) + Cl^-(g) \rightarrow NaCl(s)$
 - C $2Na(I) + Cl_2(g) \rightarrow 2NaCl(s)$
 - D Na(s) + $\frac{1}{2}Cl_2(g) \rightarrow NaCl(s)$
- 28 What type of mechanism takes place in the reaction between ethene and bromine?

$$C_2H_4(g) + Br_2(I) \rightarrow C_2H_4Br_2(I)$$

- A Electrophilic substitution
- B Nucleophilic addition/elimination
- C Electrophilic addition
- D Nucleophilic substitution
- 29 Which list shows chemical properties of alkenes?

	Reacts with	Reacts with	Reacts with	Polymerises to
	bromine	hydrogen	water	form long chains
Α	\checkmark	\checkmark	\checkmark	\checkmark
В	✓	\checkmark	×	✓
С	✓	\checkmark	\checkmark	×
D	×	×	×	\checkmark

- Hot sodium reacts violently with chlorine gas in a gas jar. An exothermic reaction occurs that spatters sodium chloride on the sides of the jar. How do bonds form in sodium chloride?
 - A lonically bonded sodium chloride molecules form by electron transfer, releasing energy.
 - B An ionic lattice is formed when sodium and chloride ions bond, releasing energy.
 - C Covalent bonds form making sodium chloride molecules.
 - D The exothermic reaction makes covalently bonded sodium chloride molecules.

- Which statement offers the best explanation for similarities in the behaviour of d-block elements?
 - A They have the same number of outer shell electrons.
 - B Their atoms all have partially filled d electron shells.
 - C Electrons are added to d sub-shells which have similar energy levels.
 - D They have similar first ionisation enthalpy values.
- Use the information given below together with the enthalpy cycle shown to determine the enthalpy change, ΔH_1 .

Which statement will give the correct value of ΔH_1 ?

$$\Delta H_{\rm C}$$
 (C) = -393 kJ mol⁻¹

$$\Delta H_{\rm C}$$
 (H₂) = -286 kJ mol⁻¹

$$\Delta H_C (C_3 H_8) = -2220 \text{ kJ mol}^{-1}$$

A
$$\Delta H_1 = -(3 \times -393) - (4 \times -286) + (-2220)$$

B
$$\Delta H_1 = (3 \times -393) + (4 \times -286) - (-2220)$$

C
$$\Delta H_1 = -393 - 286 + 2220$$

D
$$\Delta H_1 = -393 - 286 - 2220$$

