Investigating the reaction between manganate(VII) and ethanedioate ions – student sheet

In this experiment you are going to use a continuous monitoring method to investigate how the rate of the reaction between ethanedioate ions, $C_2O_4^{2-}(aq)$, and manganate(VII) ions, $MnO_4^{-}(aq)$, changes with the concentration of MnO_4^{-} ions. You will then go on to investigate the effect of the addition of a small amount of Mn^{2+} ions on the reaction.

Pre-lab questions

Manganate(VII) ions, MnO₄, undergo a redox reaction in acidic solution with ethanedioate ions, C₂O₄². During the reaction, the manganate(VII) ions are reduced to Mn²⁺ ions and the ethanedioate ions are oxidised to CO₂.

Write two half-equations for the oxidation and reduction processes respectively.

Combine to produce a full redox equation for the reaction.

2. In this reaction Mn²⁺ ions act as an autocatalyst.

Explain what an autocatalyst is.

Write equations to show how Mn²⁺ ions act as a catalyst in this reaction.

- **3.** In this investigation you will measure the concentration of manganate(VII) ions at any time during the reaction using a colorimeter.
 - a. Draw a simple diagram of a colorimeter and use it to explain how a colorimeter works.
 - b. Potassium manganate(VII) is a deep purple colour. What colour filter should you select?
- **4.** If you have a reaction involving **A**, with an order of reaction with respect to A of **n**, you can express this in a rate equation.

Rate = $k[A]^n$ where k =the rate constant for the reaction

If you take a log of both sides, the equation becomes:

$$log(rate) = nlog[A] + log k$$

By comparing this equation to the equation of a straight line (y = mx + c) explain how you could determine the order of the reaction with respect to A, \mathbf{n} , and the value of the rate constant, \mathbf{k} , from a graph of $\log(\text{rate})$ against $\log[A]$ for this reaction.

Procedure

Eye protection must be worn

Apparatus	Chemicals
burette (50 cm ³) 50 cm ³ volumetric flask / measuring cylinder (×5) colorimeter with cuvettes	potassium manganate(VII) solution, 0.002 mol dm ⁻³ (no hazard) acidified ethanedioic acid solution* (CORROSIVE – causes severe skin burns and eye damage)
test tubes with rubber bungs	
10 cm ³ measuring cylinder pipettes	manganese(II) sulfate solution, 0.02 mol dm ⁻³ (no hazard)
	distilled water

Creating a calibration curve

1. Prepare the following solutions containing varying concentrations of MnO_4^- ions.

Using a burette, carefully transfer the required amount of the KMnO₄ solution (0.002 mol dm⁻³) into a 50 cm³ volumetric flask or measuring cylinder and make up to 50 cm³ with distilled water.

Complete the table by calculating the concentration of MnO₄ (aq) ions in each final solution.

Solution	Volume of 0.002 mol dm ⁻³ KMnO ₄ solution added / cm ³	Concentration of MnO ₄ (aq) ions in final solution / mol dm ⁻³
1	10.0	
2	7.5	
3	5.0	
4	2.5	
5	1.0	

- 2. Place a cuvette containing distilled water into a colorimeter and using a suitable filter adjust to 0% absorbance.
- 3. Place each of the solutions 1 to 5 into the colorimeter in turn and read off the corresponding absorbance.
- 4. Plot a graph of absorbance (y-axis) against concentration (x-axis) the calibration curve.

The investigation

- 1. Place 2.0 cm³ of a 0.002 mol dm⁻³ solution of potassium manganate(VII) in a test tube. Fit the tube with a rubber bung.
- 2. Zero a stop clock ready for use.
- 3. Using a small measuring cylinder, add 8.0 cm³ of the acidified ethanedioic acid solution to the test tube containing the potassium manganate(VII) solution.
 - Quickly stopper the tube, invert the tube to mix the contents and start the stop clock.
- 4. Using a teat pipette, quickly transfer some of the mixture from the test tube to a cuvette and place the cuvette in the colorimeter. Measure the absorbance of the mixture in the cuvette every 20 seconds until the absorbance drops to 0.01.
- 5. Using the calibration curve, convert the absorbance values obtained into concentrations of MnO₄.
- 6. Plot a graph of time against concentration of MnO₄ ions.
- 7. Repeat steps 1 to 6, but this time add 1 drop of the 0.02 mol dm⁻³ solution of manganese(II) sulfate to the acidified ethanedioic acid solution before mixing.
- 8. Compare the two graphs. What effect does the addition of 1 drop of Mn²⁺(aq) have on the reaction? Explain why.

Further analysis

- 1. By determining the gradient of the curve at different points in the plot of the concentration of MnO₄ (aq) ions, [MnO₄ (aq)], against time for **the reaction in which Mn²⁺(aq) ions were added** from the start of the experiment, determine the rate of the reaction for 5 different concentrations of MnO₄ (aq) ions.
- 2. Plot a graph of log(rate) against log[MnO₄] and use it to determine the order of the reaction with respect to MnO₄ (aq) ions.

