Testing transition metal cations with aqueous sodium hydroxide

Cation in solution	Three drops of NaOH(aq) added to 3 cm ³ of solution of cation	10 cm ³ of NaOH(aq) added to 3 cm ³ of solution of cation
Iron(II), Fe ²⁺	A grey-green precipitate of Fe(OH) ₂ forms Darkens on standing	Grey-green precipitate remains
Iron(III), Fe ³⁺	An orange-brown precipitate of Fe(OH) ₃ forms	Orange-brown precipitate remains
Copper(II), Cu ²⁺	A pale blue precipitate of Cu(OH) ₂ forms	Blue precipitate remains
Chromium(III), Cr ³⁺	A green precipitate of Cr(OH) ₃ forms	Green precipitate dissolves to give dark green solution.
Cobalt(II), Co ²⁺	A blue precipitate of Co(OH) ₂ forms Turns pink on standing	Blue precipitate remains

Testing transition metal cations with aqueous ammonia

Cation in solution	Three drops of NH ₃ (aq) added to 3 cm ³ of solution of cation	10 cm ³ of NH ₃ (aq) added to 3 cm ³ of solution of cation
Iron(II), Fe ²⁺	A grey-green precipitate of Fe(OH) ₂ forms	Green precipitate remains
	Darkens on standing	
Iron(III), Fe ³⁺	An orange-brown precipitate of Fe(OH) ₃ forms	Brown precipitate remains
Copper(II), Cu ²⁺	A pale blue precipitate of Cu(OH) ₂ forms	Blue precipitate dissolves to give dark blue solution
Chromium(III), Cr ³⁺	A green precipitate of Cr(OH) ₃ forms	Green precipitate dissolves to some extent in concentrated ammonia solution to a give purple solution
Cobalt(II), Co ²⁺	A blue precipitate of $\mathrm{Co}(\mathrm{OH})_2$ forms Turns pink on standing	Blue precipitate dissolves to give a yellow-brown solution which rapidly darkens to a red-brown solution on standing in the air.

Testing transition metal cations with aqueous sodium carbonate

Cation in solution	Adding sodium carbonate
Iron(Ⅱ), Fe ²⁺	A greenish grey precipitate of basic iron(II) carbonate, represented simply as FeCO ₃
Iron(Ⅲ), Fe ³⁺	An orange-brown precipitate of Fe(OH) ₃ and bubbles of carbon dioxide
Copper(II), Cu ²⁺	A blue-turquoise precipitate of basic copper(II) carbonate, represented simply as CuCO ₃
Chromium(III), Cr ³⁺	A green precipitate of Cr(OH) ₃ and bubbles of carbon dioxide
Cobalt(II), Co ²⁺	A blue precipitate of basic cobalt(II) carbonate, represented simply as CoCO ₃

Note that the carbonate precipitates with sodium carbonate and metals in the +2 state are all hydrated, basic carbonates with variable formulae which take the form: $xMCO_3.yM(OH)_2.zH_2O$, where M stands for a metal ion, M^{2+} .

Hydrated metal ions in the +3 state are too acidic to form carbonate precipitates. They react to give hydroxide precipitates and carbon dioxide gas.

