Testing transition metal cations with aqueous sodium hydroxide | Cation in solution | Three drops of NaOH(aq) added to 3 cm ³ of solution of cation | 10 cm ³ of NaOH(aq) added to
3 cm ³ of solution of cation | |---------------------------------|--|--| | Iron(II), Fe ²⁺ | A grey-green precipitate of Fe(OH) ₂ forms Darkens on standing | Grey-green precipitate remains | | Iron(III), Fe ³⁺ | An orange-brown precipitate of Fe(OH) ₃ forms | Orange-brown precipitate remains | | Copper(II), Cu ²⁺ | A pale blue precipitate of Cu(OH) ₂ forms | Blue precipitate remains | | Chromium(III), Cr ³⁺ | A green precipitate of Cr(OH) ₃ forms | Green precipitate dissolves to give dark green solution. | | Cobalt(II), Co ²⁺ | A blue precipitate of Co(OH) ₂ forms Turns pink on standing | Blue precipitate remains | ## Testing transition metal cations with aqueous ammonia | Cation in solution | Three drops of NH ₃ (aq) added to 3 cm ³ of solution of cation | 10 cm ³ of NH ₃ (aq) added to 3 cm ³ of solution of cation | |---------------------------------|--|--| | Iron(II), Fe ²⁺ | A grey-green precipitate of Fe(OH) ₂ forms | Green precipitate remains | | | Darkens on standing | | | Iron(III), Fe ³⁺ | An orange-brown precipitate of Fe(OH) ₃ forms | Brown precipitate remains | | Copper(II), Cu ²⁺ | A pale blue precipitate of Cu(OH) ₂ forms | Blue precipitate dissolves to give dark blue solution | | Chromium(III), Cr ³⁺ | A green precipitate of Cr(OH) ₃ forms | Green precipitate dissolves to some extent in concentrated ammonia solution to a give purple solution | | Cobalt(II), Co ²⁺ | A blue precipitate of $\mathrm{Co}(\mathrm{OH})_2$ forms Turns pink on standing | Blue precipitate dissolves to give a yellow-brown solution which rapidly darkens to a red-brown solution on standing in the air. | ## Testing transition metal cations with aqueous sodium carbonate | Cation in solution | Adding sodium carbonate | |---------------------------------|---| | Iron(Ⅱ), Fe ²⁺ | A greenish grey precipitate of basic iron(II) carbonate, represented simply as FeCO ₃ | | Iron(Ⅲ), Fe ³⁺ | An orange-brown precipitate of Fe(OH) ₃ and bubbles of carbon dioxide | | Copper(II), Cu ²⁺ | A blue-turquoise precipitate of basic copper(II) carbonate, represented simply as CuCO ₃ | | Chromium(III), Cr ³⁺ | A green precipitate of Cr(OH) ₃ and bubbles of carbon dioxide | | Cobalt(II), Co ²⁺ | A blue precipitate of basic cobalt(II) carbonate, represented simply as CoCO ₃ | Note that the carbonate precipitates with sodium carbonate and metals in the +2 state are all hydrated, basic carbonates with variable formulae which take the form: $xMCO_3.yM(OH)_2.zH_2O$, where M stands for a metal ion, M^{2+} . Hydrated metal ions in the +3 state are too acidic to form carbonate precipitates. They react to give hydroxide precipitates and carbon dioxide gas.