Vintage titrations: sulphur dioxide in wine

Time

1-1.5 h.

Curriculum links

Redox titrations using iodine.

Group size

2.

Materials and equipment

Materials per group

$-120 \mathrm{~cm}^{3}$ of white wine (see below)
$-50 \mathrm{~cm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ iodine solution (stabilized with potassium iodide)
$-20 \mathrm{~cm}^{3}$ of $2.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ (Corrosive to skin and eyes)
$-25 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ sodium hydroxide (Corrosive to skin and eyes)
$-7 \mathrm{~cm}^{3}$ of 2% starch solution

- deionised water.

Equipment per group

$-50 \mathrm{~cm}^{3}$ burette
$-25 \mathrm{~cm}^{3}$ pipette
$-10 \mathrm{~cm}^{3}$ and $25 \mathrm{~cm}^{3}$ measuring cylinders
$-250 \mathrm{~cm}^{3}$ conical flasks

- white tile
- safety glasses.

Safety

Eye protection (to BS EN166 3) must be worn.

Risk assessment

A risk assessment must be carried out for this activity.
This is an open-ended problem solving activity, so the guidance given here is necessarily incomplete. Teachers need to be particularly vigilant, and a higher degree of supervision is needed than in activities which have more closed outcomes. Students must be encouraged to take a responsible attitude towards safety, both their own and that of others. In planning an activity students should always include safety as a factor to be considered. Plans should be checked by the teacher before implementing them.

You must always comply with your employer's procedures and in some cases may decide that a particular activity is inappropriate in your situation. Further information on Health and Safety should be obtained from reputable sources such as CLEAPSS [http://science.cleapss.org.uk] in England, Wales and Northern Ireland and, in Scotland, SSERC [https://www.sserc.org.uk/].

Commentary

This analysis is based on the familiar titration with iodine, using starch as an indicator. ${ }^{1}$ In trialling some students needed help to devise an appropriate method; others coped easily.

Procedure

Free SO_{2}

$50 \mathrm{~cm}^{3}$ of wine is pipetted into a $250 \mathrm{~cm}^{3}$ conical flask and ca $5 \mathrm{~cm}^{3}$ of sulphuric acid and 2-3 cm^{3} of starch solution added.

The solution is titrated with $0.01 \mathrm{~mol} \mathrm{dm}^{3} \mathrm{I}_{2}$ solution. The end-point is taken to be the appearance of a dark blue colour which persists for about 2 minutes.

In the interests of economy one very careful titration should be sufficient.

Total (free and combined) SO_{2}

$25 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ is placed in a $250 \mathrm{~cm}^{3}$ conical flask, using a measuring cylinder. $50 \mathrm{~cm}^{3}$ of wine is pipetted into this flask. The flask is shaken and left to stand for 15 minutes then $10 \mathrm{~cm}^{3}$ of sulphuric acid and $2-3 \mathrm{~cm}^{3}$ of starch solution are added. The solution is titrated with $0.01 \mathrm{~mol} \mathrm{dm}^{3} \mathrm{I}_{2}$ solution as above.

Calculation

The amounts of free and combined SO_{2} can be calculated as $\mathrm{mol} \mathrm{dm}^{-3}$ and as $\mathrm{mg} \mathrm{dm}^{-3}$ (parts per million or ppm). The legal limit for total SO_{2} varies from one country to another; 250 ppm is a commonly accepted value.

Although there is no legal limit on the amount of free SO_{2}, levels from $20-40$ ppm safeguard the wine without affecting its taste. If the level is below 10 ppm in a white wine it is in danger of going bad.

Extension

The method is not usually recommended for red wines because the colour masks the end-point. However it can normally be seen without too much difficulty if the mixture in the flask is compared with a sample of the original wine.

Reference

1. G. F. W. Fowles, Educ. Chem., 1978, 15, 89.

Credits

© Royal Society of Chemistry
Health \& safety checked May 2018
Page last updated October 2018

