Calculations in chemistry

Name

\qquad

Boxes to be ticked and dated only when an Expert group agrees:

Type of calculation	Tick	Date	Signed
I can calculate the relative formula mass of a compound			
I can find the percentage of an element from a given formula			
I can calculate the mass of reactant and product from balanced equations			

Relative atomic masses

Element	Symbol	Relative atomic mass	Element	Symbol	Relative atomic mass
Hydrogen	H	1	Potassium	K	39
Carbon	C	12	Calcium	Ca	40
Nitrogen	N	14	Iron	Fe	56
Oxygen	O	16	Copper	Cu	63.5
Sodium	Na	23	Zinc	Zn	65
Magnesium	Mg	24	Bromine	Br	80
Aluminium	Al	27	Silver	Ag	108
Sulfur	S	32	Iodine	I	127
Chlorine	Cl	35.5	Lead	Pb	207

Practice questions

Calculating relative formula masses

What is the relative formula mass of:

1. methane
2. sodium hydroxide
3. sulfuric acid
4. zinc nitrate
CH_{4}
NaOH
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$

Calculating the percentage of an element in a compound from a given formula

What is the percentage of:

1. carbon in methane CH_{4}
2. calcium in calcium carbonate CaCO_{3}
3. oxygen in sulfur dioxide SO_{2}
4. nitrogen in ammonium sulfate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Calculating the mass of reactants and products from balanced equations

1. What mass of calcium oxide is formed when 10 g of calcium carbonate is completely decomposed?

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

2. What mass of sulfur dioxide is produced when 2.4 g of sulfur is burnt?

$$
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}
$$

3. What mass of carbon is needed to react with 8 g of copper(II) oxide?

$$
2 \mathrm{CuO}+\mathrm{C} \rightarrow 2 \mathrm{Cu}+\mathrm{CO}_{2}
$$

4. What mass of iron(III) oxide is needed to react with carbon monoxide to produce 112 g of iron?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

