Structure and bonding explanation Answers

Substance	Reasons for properties
Carbon (diamond)	The high melting point, extreme hardness and high density are due to its giant molecular structure.
Propanone	The relatively low melting point, boiling point, hardness and density are due to its simple molecular structure.
Iodine	The relatively low melting point, boiling point, hardness and density are due to its simple molecular structure. The melting point indicates that it is a solid at room temperature due to its high molecular mass and increased induced dipole-induced dipole bonds.
Water	Its high melting point, boiling point, density and hardness are due to its giant lattice structure. Its electrical conductivity is due to the delocalised electrons.
Polyethene	The relatively low melting point, boiling point, hardness and density are due to its simple molecular structure. The relatively high boiling point compared with molecular mass is due to hydrogen bonds.
Sodium chloride	The low melting point, melting over a range, suggests a polymer. This is consistent with a low hardness and density just less than that of water.
Silicon(IV) oxide	The high melting point and boiling point suggests a giant lattice. Its structure contains ions which are able to move in the molten substance and therefore conduct electricity.
A high melting point and boiling point indicate a giant lattice. The	
inability to conduct electricity suggests a giant covalent molecule.	

