

Level: 14-16 years (Higher)

Source: rsc.li/3ntOcpM

In context

Subject area: Organic chemistry

Topic: Alcohols

The 'whoosh' bottle experiment

This experiment shows the power of the reaction that can take place when an alcohol burns.

Here is a method used by a teacher to show this experiment:

- Use an empty polycarbonate water bottle of volume 20 dm³.
- Add approximately 10cm³ of methanol into the bottle.
- Swirl the methanol inside the bottle.
- Then decant the excess methanol from the bottle.
- Place a rubber stopper or bung into the top of the bottle.
- Connect a wooden splint to the end of a metre rule, and light the end of the splint with a match.
- Carefully place the lighted splint (now at arm's length) above the stopper on the bottle, and remove the stopper with the other hand.
- A spectacular reaction should now take place. Watch the reaction at https://youtu.be/yl89heCsBpQ.

Source: Adrian Guy

Answer the questions below.

1. Explain why the methanol is swirled within the bottle before it is ignited.

Answer: To increase the surface area of the methanol so that it may form a vapour.

- 2. Define the following terms used in this method:
- a) Decant

Answer: To pour off a liquid or to pour from one container to another.

b) Excess

Answer: More than that needed, or left over.

3. State the molecular formula of methanol.

Answer: CH4O.

4. Draw the structure of a methanol molecule in which all bonds are shown.

In the reaction in the bottle, methanol is burning to form carbon dioxide and water.Write a chemical equation to show this reaction.

Answer: $CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O$ or $2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$

6. Explain why this reaction produces a 'whoosh' when it takes place within a bottle.

Answer: Hot gases form and are forced out of the bottle opening under high pressure.

7. The internal volume of the bottle was 20 dm^3 .

Write this volume in the following units:

a) cm³.

Answer: 20,000 cm³.

b) m³.

Answer: 0.020 m³.

8. The mass of methanol vapour remaining in the bottle before ignition was $5.2\ \mathrm{g}$.

Calculate the concentration of the methanol vapour in:

a) g/dm³.

Answer: $\frac{5.2 g}{20 dm^3}$ = 0.26 g / dm³

b) mol / dm³, and writing this answer in standard form.

RAM data: C = 12, H = 1, O = 16.

Answer: RFM for methanol = 32

Moles of methanol =
$$\frac{0.26 \text{ g}}{32}$$
 = 8.125 x 10⁻³ mol / dm³

 c) Calculate the mass of carbon dioxide formed when 5.2 g of methanol vapour is ignited.

You will need to use your chemical equation from question 5 to help you. Show your working clearly.

```
Answer: CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O

Moles of methanol = \frac{5.2 g}{32} = 0.1625 mol.

Moles of carbon dioxide formed = 0.1625 mol (1 : 1 ratio from the chemical equation) .

Mass of carbon dioxide = 0.1625 \times RFM of CO_2
= 0.1625 \times 44 = 7.15 g
```

9. After the reaction in a different bottle had taken place, it was allowed to cool.

A colourless liquid, A, is observed at the base of the bottle.

a) Name liquid A.

Answer: Water.

b) If the volume of liquid A was 4.50 cm³, calculate the mass of methanol that was burnt in the bottle.

Assume that the density of liquid $A = 1 g / cm^3$.

```
Answer: CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O

As the density of water = 1 g/cm<sup>3</sup>, the mass of water formed = 4.50 g.

Moles of water formed = \frac{4.50 \text{ g}}{18} = 0.25 \text{ mol.}

Moles of methanol used = \frac{0.25}{2} = 0.125 \text{ mol.}

Mass of methanol = 0.125 \times 32 = 4.0 \text{ g}
```

Instructions for this teacher demonstration are available at resc.li/30q7C4S.