

In context

Subject area: Organic chemistry	Level: 14-16 years (Foundation)
Topic: Alkenes	Source: rsc.li/3jl6P77

1. Many fresh fruit and vegetables produce ethene.

This gas may then ripen other fruit which is unripe.

The table below shows how much ethene (in cm^3) is produced from 1 kg of fruit each hour.

Name of fruit or vegetable	Volume of ethene produced by 1 kg of fruit in 1 hour (in cm ³)
Apricot	30
Avocado	150
Rhubarb	0.25
Banana	3.2
Pineapple	1.2 × 10 ⁻³
Passion fruit	235
Pear	85


```
Source: Envato Elements
```

a) Write the volume of ethene produced by 1 kg of pineapple per hour as a normal number (that is, one not in standard form).

Answer: 0.0012.

b) Place the fruit in order of the volume of ethene they produce each hour, smallest first.

Answer: Pineapple, rhubarb, banana, apricot, pear, avocado, passion fruit.

c) Calculate the volume of ethene produced by the following masses of fruit.

Remember to give units in your answers.

- i) 2 kg of bananas in 1 hour Answer: 6.4 cm³.
- ii) 200 g of apricots in 1 hour Answer: 6 cm³.
- iii) 4 kg of pears in 2 hours Answer: 680 cm³.

d) Ethene has the molecular formula C₂H₄.

Draw the structure of an ethene molecule showing the chemical bonds.

e) Ethene is described as an unsaturated hydrocarbon, define each term in the table below.

Unsaturated	Answer: A molecule containing one or more carbon single bonds.
Hydrocarbon	Answer: A substance containing hydrogen and carbon only.

f) State the name of a chemical substance that could be used to show that ethene is unsaturated.

Answer: Bromine water.

g) Give the result of the test when using the substance in part f).

Answer: Bromine water goes from orange to colourless.

2. This question is about the two molecules in the table below.

a) Complete the table.

	H H H H-C-C-C-H H H H H H H	$ \begin{array}{c} H \\ H \\ C = C \\ H \end{array} $ Molecule 2
Homologous series	Answer: Alkanes.	Answer: Alkenes.
General formula of homologous series	Answer: C _n H _(2n+2)	Answer: C _n H _{2n}
Name of substance	Answer: Propane.	Answer: Propene.
Molecular formula	Answer: C ₃ H ₈	Answer: C ₃ H ₆
Burns with smoky flame (Y/N)	Answer: No.	Answer: Yes.

b) Give the name of a substance that would change molecule 2 into molecule 1.

Answer: Hydrogen.

c) Which of the molecules is the more reactive?

Give a reason.

Answer: Molecule 2. It contains a carbon double bond.

Parts d) and e) are about the molecule shown.

d) What is the name of this molecule?

Answer: Butene or but-1-ene.

e) Which molecule in the table (molecule 1 or molecule 2) is this molecule most similar to?

Give a reason for your answer.

Answer: Molecule 2.

Molecule 2 and but-1-ene both have carbon double bonds, or contain the same functional group.