

UK Chemistry Olympiad support resources: introductory questions mark scheme

1. The question about air

(a)

- (i) Molar mass of $N_2 = 2(14.01) = 28.02 \text{ g mol}^{-1}$; Molar mass of O2 = 2(16.00) = 32.00 g mol}^{-1}; Molar mass of Ar = 39.95 g mol}^{-1}
- (ii) Mass of 1 mole of air = 29.0 g to three significant figures

(b)

- (i) Volume of the troposphere = $5.11 \times 10^{21} \text{ dm}^3$
- (ii) Mass of air in the troposphere = $6.17 \times 10^{21} g$

If other values given in question were used then:

Volume of troposphere/ dm ³	Molar mass of air / g mol-1	Mass of air in troposphere / g
5.11 x 10 ²¹	30.0	6.38 x 10 ²¹
6.00 x 10 ²¹	29.0	7.24 x 10 ²¹
6.00 x 10 ²¹	30.0	7.49 x 10 ²¹

(c)

- (i) Mg + $\frac{1}{2}$ O2 \rightarrow MgO
- (ii) Minimum volume of air = 23.5 dm³

(d)

(i)
$$3Mg + N_2 \rightarrow Mg_3N_2$$

(ii) 100 - x

(iii) MgO:
$$\frac{40.31}{24.31}$$
 x

$$Mg_2N_3$$
: $\frac{100.95(100-x)}{3(24.31)}$

(allow equivalent expressions)

(iv) Mass of Mg which reacts to form MgO = 78.8 g

2. The question about bromine and its isotopes

(a)

- (i) 0.25 (allow 25%)
- (ii) 0.25 (allow 25%)
- (iii) 0.5 (allow 50%)

(b)

Abundance of bromine-79 = 60% Abundance of bromine-81 = 40%

(c)

- (i) 247, 248, 249, 250, 251, 252, 253 and 254 (allow 247–254)
- (ii) 0.125 (allow 12.5%)
- (iii) 0.375 (allow 37.5%)
- (iv) 0.3 (allow 30%)

(d)

- (i) C_3H_6O
- (ii)

B:

(e)

CHBr₃