# Particle model: knowledge check

1.1 Add the following labels to the diagram below.

| boiling    | conde  | ensing  | freezing | gas   |
|------------|--------|---------|----------|-------|
|            | liquid | melting | solic    | i     |
|            |        |         |          | <br>  |
| ↓<br>22222 |        | `▲ ↓    |          |       |
|            |        |         |          |       |
| ice        |        | water   |          | steam |

**1.2** Use the words to complete the sentences.

| clo          | ose together          | regular        | shape            | vibrate                |  |
|--------------|-----------------------|----------------|------------------|------------------------|--|
| In solids, t | he particles are very | close toge     | ther in a        |                        |  |
|              |                       | pc             | attern. The part | cles                   |  |
|              |                       | are            | ound a fixed p   | osition. Solids have a |  |
| fixed        |                       |                | Solids cann      | ot be easily           |  |
| compress     | sed because their po  | articles are _ |                  |                        |  |
| with no sp   | pace to move into.    |                |                  |                        |  |
|              |                       |                |                  |                        |  |

Available from <a href="rsc.li/3ZG7ISh">rsc.li/3ZG7ISh</a>

**1.3** Use the words to complete the sentences.

| compressed                                               | flow             | less       | more                             |  |  |
|----------------------------------------------------------|------------------|------------|----------------------------------|--|--|
| particles                                                | randoml          | y          | shape                            |  |  |
| In liquids, the particles are v                          | very close toget | her and    | are                              |  |  |
|                                                          | _arranged, but   | still touc | hing. The particles move         |  |  |
| around each other and ha                                 | ve               |            | energy than in a                 |  |  |
| solid but                                                | than             | in a gas.  |                                  |  |  |
|                                                          |                  |            |                                  |  |  |
| Liquids do not have a fixed                              |                  |            | Liquids can                      |  |  |
|                                                          | _ and take the s | shape of   | their container, because         |  |  |
| their                                                    | can mov          | e around   | d each other. Liquids cannot     |  |  |
| be easily                                                | bec              | ause the   | r particles are close            |  |  |
| together with little space to                            | move into.       |            |                                  |  |  |
|                                                          |                  |            |                                  |  |  |
| Use the words to complete the sentences.                 |                  |            |                                  |  |  |
| energy                                                   | flow             | par        | licles                           |  |  |
| quickly                                                  | randomly         | ,          | space                            |  |  |
| In gases, the particles are far apart and arranged.      |                  |            |                                  |  |  |
| The particles move                                       |                  | in c       | all directions. The particles in |  |  |
| a gas have much more than the particles in a             |                  |            |                                  |  |  |
| liquid or solid. Gases do not have a fixed shape and can |                  |            |                                  |  |  |
| and completely fill their container. Gases can be        |                  |            |                                  |  |  |
| compressed, because their                                |                  |            | are far apart with               |  |  |
|                                                          | _ to move into.  |            |                                  |  |  |

1.4



#### Particle model: test myself

Choose suitable words to complete the sentences.

- **2.1** Write the words that describe the following changes of state.
  - (a) Solid  $\rightarrow$  liquid (eg ice to water) is known as \_\_\_\_\_.
  - (b) Liquid  $\rightarrow$  solid (eg water to ice) is known as \_\_\_\_\_.
  - (c) Liquid  $\rightarrow$  gas (eg water to steam) is known as \_\_\_\_\_
  - (d) Gas  $\rightarrow$  liquid (eg steam to water) is known as \_\_\_\_\_.
- 2.2 In which state do the particles have most kinetic energy?

Particles have most kinetic energy in the \_\_\_\_\_\_state.

2.3 What happens to the kinetic energy of the particles when a solid changes to a liquid?

The kinetic energy \_\_\_\_\_\_.

**2.4** Describe the arrangement of particles in a solid.

The particles in a solid are in a \_\_\_\_\_\_ arrangement. All the

particles are \_\_\_\_\_\_ and \_\_\_\_\_

around a fixed position.



| S1 | IUDEN | IT SHEET ★ 🛠                                                         | <b>Review my learning</b> 14–16 years<br>Available from rsc.li/3ZG7ISh |
|----|-------|----------------------------------------------------------------------|------------------------------------------------------------------------|
|    | 2.5   | How do the particles in a gas move?                                  |                                                                        |
|    |       | The particles in a gas move                                          | in                                                                     |
|    | 2.6   | What happens to the movement of gas increased?                       | s particles when the temperature is                                    |
|    |       | When temperature is increased, the pa                                | rticles in a gas move more                                             |
|    |       | because the                                                          | ney have more                                                          |
|    |       | energy.                                                              |                                                                        |
|    |       |                                                                      |                                                                        |
|    | 2.7   | What is meant by 'melting point'?                                    |                                                                        |
|    |       | The melting point is the temperature at                              | which a                                                                |
|    |       | becomes a                                                            |                                                                        |
|    | 2.8   | What is meant by 'boiling point'?                                    |                                                                        |
|    |       | The boiling point is the temperature at v                            | vhich a                                                                |
|    |       | becomes a                                                            |                                                                        |
|    | 2.9   | If a substance has a melting point of 50° state will it be at 100°C? | °C and a boiling point of 170°C, in what                               |
|    |       | (a) Below 50°C, the substance is a                                   |                                                                        |
|    |       | (b) Above 170°C, the substance is a _                                |                                                                        |
|    |       | (c) So, at 100°C, the substance is a                                 |                                                                        |





# Review my learning 14-16 years

- Available from <a href="rsc.li/3ZG7ISh">rsc.li/3ZG7ISh</a>
- **2.10** If a substance has a melting point of –220°C and a boiling point of –112°C, in what state will it be at room temperature (25°C)?
  - (a) Below –220°C, the substance is a \_\_\_\_\_\_.
  - (b) Above –112°C, the substance is a \_\_\_\_\_.
  - (c) So, at 25°C, the substance is a \_\_\_\_\_.



### Particle model: feeling confident?

 $\mathbf{G}$ 

**3.1** Use the melting and boiling point data for the following substances to decide which state they are at 0°C and 100°C. Write **solid**, **liquid** or **gas** to indicate the state.

| Substance | Melting point<br>(°C) | Boiling point<br>(°C) | State at<br>0°C | State at<br>100°C |
|-----------|-----------------------|-----------------------|-----------------|-------------------|
| A         | 44                    | 280                   | solid           | liquid            |
| В         | 30                    | 2403                  |                 |                   |
| С         | -39                   | 357                   |                 |                   |
| D         | -101                  | -35                   |                 |                   |
| E         | -209                  | -183                  |                 |                   |
| F         | -71                   | -62                   |                 |                   |
| G         | -7                    | 59                    |                 |                   |
| Н         | 302                   | 669                   |                 |                   |
| I         | 27                    | 677                   |                 |                   |



### Particle model: what do I understand?

6363

Think about your answers and confidence level for each mini-topic. Decide whether you understand it well, are unsure or need more help. Tick the appropriate column.

| Mini-topic                                                                                                                  | l understand<br>this well | l think l<br>understand this | l need more<br>help |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|---------------------|
| I know the states of matter.                                                                                                |                           |                              |                     |
| I can describe the<br>arrangement of particles in:<br>• solids<br>• liquids<br>• gases.                                     |                           |                              |                     |
| I know the names of state changes.                                                                                          |                           |                              |                     |
| I understand the relative<br>energy of particles in:<br>• solids<br>• liquids<br>• gases.                                   |                           |                              |                     |
| I understand the changes in<br>kinetic energy when<br>substances change state.                                              |                           |                              |                     |
| I understand that different<br>substances have different<br>melting and boiling points<br>and know what these<br>represent. |                           |                              |                     |
| I can use melting and boiling<br>point data to deduce the<br>state of a substance at a<br>given temperature.                |                           |                              |                     |
| Feeling confident? topics                                                                                                   | l understand<br>this well | l think l<br>understand this | l need more<br>help |
| I can use melting and boiling<br>point data to identify the<br>state of a substance at<br>different temperatures.           |                           |                              |                     |