# Metallic bonding and alloys

This resource accompanies the infographic poster **Metallic bonding** in *Education in Chemistry* which you can download and print to display in your classroom: <a href="mailto:rsc.li/468Rg0l">rsc.li/468Rg0l</a>

# Learning objectives

- 1 Describe the structure and bonding in pure metals and alloys.
- Explain the properties of pure metals and alloys using your understanding of their structure and bonding.

### Introduction

The worksheet will support learners to answer longer questions on metallic bonding and alloys independently.

Task 1 is a true or false quiz which checks learners' understanding of both learning objectives.

Task 2 and task 4 Q1 ask learners to describe – and show their understanding of – the structure of metals due to metallic bonding.

Task 3 and task 4 Q2 ask learners' to use their knowledge of the structure of metals and alloys to explain their properties.

A **scaffolded version** of the worksheet is available which includes prompts, matching definitions and a structure strip to support learners to answer the same questions.

### **Answers**

#### Task 1 - True or false?

- Metal ions are always positively charged. True
- The metal ions are close packed in the structure. True
- In metallic bonding, the outer shell electrons are delocalised. True
- The delocalised electrons are in a fixed position and are unable to move. False
- Metals cannot conduct electricity. False
- Metals have high melting points. True
- Metals are malleable and ductile. True
- An alloy is a mixture of two or more elements, where at least one element is a metal. True
- Pure metals are stronger than alloys. False

Available from rsc.li/468Rq01

- Alloys have a layered structure. False
- In alloys, the atoms are all the same size. False

## Task 2 – Description of metallic bonding

1.

| Description of error                           | Explanation of why this is incorrect                                                                                                       |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| The charge of magnesium is 1+                  | Magnesium is in group 2 so has 2 outer shell electrons. The charge should therefore be 2+ when these are delocalised.                      |
| The ions are too far apart.                    | The structure should be close packed.                                                                                                      |
| The outer electrons are in shells.             | In metallic bonding the electrons are delocalised and can move through the structure.                                                      |
| Magnesium should have 2 outer shell electrons. | Magnesium is in Group II of the periodic table. It produces Mg2+ ions and there will be two delocalised electrons for every magnesium ion. |

2. Magnesium ions must have a 2+ charge. They must be close packed. There must be the same number of electrons as there are ions.



Task 3 – Properties of metals

| Property of metals            | Explanation using knowledge of metallic bonding                                                                                                                                                                                            |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High melting point            | Metallic bonds are the strong electrostatic interactions between the positively charged metals ions and the sea of delocalised electrons. Metals have high melting points as a large amount of energy is required to overcome these forces |
| High density                  | Metal ions are closely packed in a giant 3D lattice structure.  The close packed nature of the metal ions means that metals have a high density                                                                                            |
| Good conductor of electricity | Metals are good electrical conductors due to the sea of delocalised electrons, which are free to move through the structure and carry electrical charge                                                                                    |
| Malleable and ductile         | Pure metals only contain one type of metal atom so the atoms are arranged in layers which can slide over one another                                                                                                                       |

## Education in Chemistry 14–16 years



Available from rsc.li/468Rq01

#### Task 4 - Alloys

- Alloys contain different sized atoms which means that the layers are distorted.
- Alloys contain a sea of delocalised electrons which can move through the structure.
- Pure metals only contain one type of atom, whereas alloys contain two or more different types of atoms.
- The atoms in a pure metal form layers as all the atoms are the same size.
- In alloys however, the different sizes of the atoms distort the layered structure.
- Both pure metals and alloys lose their outer shell electrons to form a sea of delocalised electrons.
- Alloys are stronger than pure metals as they have two or more different atoms, which are different sizes.
- This distorts/disrupts the layer structure seen in pure metals which means that the layers cannot easily slide over one another.
- This increases the strength of the material while maintaining other properties such as low density.