Problem 6: Acid erosion

Pre-Lab answers

1 \& 2
Lemonade contains predominantly citric acid from the lemons

Orange juice contains both citric acid and ascorbic acid (Vitamin C)

$$
\mathrm{p} K_{\mathrm{a} 1} 4.1
$$

$$
\mathrm{p} K_{\mathrm{a} 2} 11.79
$$

White wine contains principally tartaric acid and malic acid (although the students may find others)

$\mathrm{pK} \mathrm{a}_{1} 3.05$
$\mathrm{p} K_{\mathrm{a} 2} 5.10$
tartaric acid

$$
\mathrm{p} K_{\mathrm{a} 2} 4.39
$$

All the acids are weak acids (NOTE In ascorbic acid the proton indicated in red is the acidic proton with a pKa of 4.1. The anion generated is stabilised through the conjugated carbonyl system.)
3. A strong acid is an acid which is fully dissociated in solution. An example is HCl which is fully dissociated to H^{+}and Cl^{-}ions in solution;

$$
\mathrm{HCl} \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

A weak acid is an acid which is only partially dissociated in solution. An equilibrium is established;

$$
\text { e.g. ethanoic acid, } \mathrm{CH} 3 \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

The concentration of an acid tells us how many moles of acid there are in the solution. The acid can be either a strong or a weak acid. So, for example, you can have a dilute solution of a strong acid e.g. 0.1 M HCl or a concentrated solution of a weak acid e.g. $10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$.

4 \& 5

Strong acid - weak base

Volume of base added

Weak acid - weak base

Volume of base added

At concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ or above, sodium hydroxide is corrosive and will cause severe eye damage. Goggles must be worn when it is in use.

Teacher and Technician Pack
Proposed method

indicator is required.
In order to decide on a suitable concentration for the base, students roughly determine the approximate
$10 \mathrm{~cm}^{3}$ aliquot of drink + phenolpthalein indicator [Highly flammable; Harmful]
lumes of the three bases needed
to neutralise the acids in the

$25 \mathrm{~cm}^{3}$ aliquot of drink

+ phenolphthalein indicator [Highly flammable; Harmful]

Drink	White wine	Orange juice	Lemonade
Average titre / cm^{3}	22.95	33.75	17.20

Students accurately determine the amount of acid in each of the drinks by titrating a $25 \mathrm{~cm}^{3}$ aliquot of each drink against a 0.1 M solution of NaOH
[Irritant] of known
concentration, using phenolphthalein [Highly flammable; Harmful] as indicator.

Equipment list

Each group will need;

Initial investigations;

- Access to NaOH of varying concentrations (0.1 M [lrritant]; 1 M [Corrosive]; 2 M [Corrosive]). Approximate concentrations are adequate \ddagger
- $3 \times 10 \mathrm{~cm}^{3}$ measuring cylinder
- Phenolphthalein indicator [Highly flammable; Harmful]
- Samples of orange juice, lemonade and white wine ($30 \mathrm{~cm}^{3}$ samples of each)
- $3 \times 100 \mathrm{~cm}^{3}$ conical flask
- Disposable pipettes
\ddagger Each group should only need approx 50 cm 3 of $0.1 \mathrm{M} \mathrm{NaOH}, 10 \mathrm{~cm}^{3}$ of 1 M NaOH and 5 cm^{3} of 2 M NaOH in total if they try and neutralise the acid in $10 \mathrm{~cm}^{3}$ samples of each of the drinks

Accurate titration;

- M NaOH of known, accurate concentration [Irritant] \dagger
- $125 \mathrm{~cm}^{3}$ White wine
- $125 \mathrm{~cm}^{3}$ Lemonade (opened several days previously to allow all the CO_{2} to come out of solution)
- $125 \mathrm{~cm}^{3}$ Orange juice
- Phenolphthalein indicator [Highly flammable; Harmful]

If the group is to split up the work load and analyse the acid content in one drink each, each group will need 3 of each of the following;

- $50 \mathrm{~cm}^{3}$ burette*
- Funnel
- Burette stand and clamp
- $25 \mathrm{~cm}^{3}$ volumetric pipette with pipette filler*
- $250 \mathrm{~cm}^{3}$ conical flask
- White tile
- Distilled water
- $250 \mathrm{~cm}^{3}$ beaker (for the NaOH)
* The equipment must either be labelled with its accuracy or the information provided separately.
\dagger If the titration is carried out on $25 \mathrm{~cm}^{3}$ samples of drink, the approximate titres are; white wine $23 \mathrm{~cm}^{3}$; orange juice $34 \mathrm{~cm}^{3}$; lemonade $17 \mathrm{~cm}^{3}$ (although this will vary with exact origin of drink)

For the titration, each student group will therefore need access to $150 \mathrm{~cm}^{3}$ of each drink and $600 \mathrm{~cm}^{3}$ of 0.1 M NaOH of known concentration (allowing for washing etc).

