# Acids and bases pH and Kw

1. Complete the table below showing some numbers and their common logarithmic values; (1 mark)

| Number (n) | log <sub>10</sub> n |
|------------|---------------------|
| 0.001      |                     |
| 0.1        |                     |
|            | 0                   |
|            | 3                   |

2. Calculate the pH (to 2 dp) of each of the solutions below: (3 marks)

(a) 
$$\frac{[H^+]}{1.00 \times 10^{-10}}$$
 pH = ...  
mol dm<sup>-3</sup>

(b) 
$$[H^+] = pH = ....$$
  
0.200 × 10<sup>-2</sup>

(c) 
$$[H^{+}] = pH = \dots$$
  
 $3.50 \times 10^{-3}$   
mol dm<sup>-3</sup>

mol dm<sup>-3</sup> mol dm<sup>-3</sup> mol dm<sup>-3</sup>

3. As water is always slightly ionised, we can write the following equilibrium for water;

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq) \Delta H = +ive$$

As only a very small amount of the water is ionised, we define a new equilibrium constant for this equilibrium called the **ionic product of water**,  $K_w$ ;

$$K_w = [H^+(aq)] [OH^-(aq)]$$

Like any other equilibrium constant, the value of  $K_w$  depends on the temperature of the equilibrium.

- (a) Predict what effect increasing the temperature will have **on the pH** of pure water. (1 mark)
- (b) Calculate the pH of pure water (to 2 dp) at each of the temperatures below;

(i) 
$$10 \, ^{\circ}\text{C}$$
,  $K_{\text{W}} = 0.29 \times 10^{-14} \, \text{mol}^2 \, \text{dm}^{-6}$ 

(ii) 25 °C, 
$$K_w = 1.01 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$$

(iii) 40 °C, 
$$K_w = 2.92 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$$

(3 marks)

(c) Complete the paragraph below;

As the temperature decreases, water becomes (more acidic / less acidic / remains neutral). Explain your answer

(2 marks)

# pH and acids

| 1. Identify the species formed when the following act as acids;  (a) HCl  (b) NH <sub>4</sub> <sup>+</sup> (c) HCO <sub>3</sub> <sup>-</sup>                                                                                         |                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| 2. Calculate the pH (to 2 dp) of the following acids;  (a) 0.25 mol dm <sup>-3</sup> HCl  (b) 0.004 mol dm <sup>-3</sup> NaHSO <sub>4</sub> , K <sub>a</sub> of HSO <sub>-4</sub> = 1.00 × 10 <sup>-2</sup> mol dm <sup>-3</sup>     | (3 marks<br>(1 mark)<br>(2 marks  |  |
|                                                                                                                                                                                                                                      |                                   |  |
| 3. Calculate the concentration of the following acids given their pH.  (a) HCl, pH 0.65  (b) H <sub>2</sub> SO <sub>4</sub> , pH 2.61  (c) CH <sub>3</sub> COOH, pH 3.40, K <sub>a</sub> 1.7 × 10 <sup>-5</sup> mol dm <sup>-3</sup> | (1 mark)<br>(1 mark)<br>(2 marks) |  |
|                                                                                                                                                                                                                                      |                                   |  |

# pH and bases

- 1. Define;
- (a) a Brønsted-Lowry acid

(1 mark)

(b) a Brønsted-Lowry base

(1 mark)

- **2.** In the following acid-base reactions identify the **reactant species** (ion or molecule) acting as a Brønsted-Lowry base;
  - (a)  $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \rightarrow (\text{NH}_4^+)_2 \text{SO}_4^{2-}$
  - (b)  $Ca(OH)_2 + H_2CO_3 \rightarrow CaCO_3 + 2 H_2O$
  - (c) Na<sub>2</sub>CO<sub>3</sub> + 2 HCl  $\rightarrow$  2 NaCl + H<sub>2</sub>O + CO<sub>2</sub>

(3 marks)

- **3.** Calculate the pH (to 2 dp) of the following basic solutions (take  $K_w$  to be 1.00 × 10<sup>-14</sup> mol<sup>2</sup> dm<sup>-6</sup>);
  - (a)  $0.150 \text{ mol dm}^{-3} \text{ NaOH}$

(1 mark)

(b)  $0.261 \text{ mol dm}^{-3} \text{ Mg}(OH)_2$ 

(1 mark)

- **4.** Calculate the concentration of the following basic solutions (take  $K_w$  to be 1.00 × 10<sup>-14</sup> mol<sup>2</sup> dm<sup>-6</sup>);
  - (a) KOH, pH 11.00

(1 mark)

(b) Ca(OH)<sub>2</sub>, pH 10.45

(1 mark)

**5.** Ethylamine is a weak base. Draw a curly arrow on the diagram below to show how the ethylamine acts as a base.



### **Acid-base tritrations**

Some students are carrying out an investigation into the neutralisation reactions between strong acids and bases and weak acids and bases.

They titrate 25 cm<sup>3</sup> samples of four different bases against four different acids as shown in the table below.

For each of the titrations 1 - 4;

- (a) Choose the correct titration curve from those shown below,
- (b) Name a suitable indicator for the titration,
- (c) For titrations **1** and **2**, calculate the concentration of the acid.

| Titration | Base                                                | Acid             |
|-----------|-----------------------------------------------------|------------------|
| 1         | 0.100 mol dm <sup>-3</sup> NaOH                     | HCI              |
| 2         | 0.100 mol dm <sup>-3</sup> KOH                      | нсоон            |
| 3         | 0.100 mol dm <sup>-3</sup> NH <sub>3</sub> solution | HNO <sub>3</sub> |
| 4         | 0.100 mol dm <sup>-3</sup> NaHCO <sub>3</sub>       | CH₃COOH          |





Suitable indicator:

Conc. of acid (if needed): .....



#### Titration number: 1 2 3 4

Suitable indicator:

Conc. of acid (if needed):



Titration number: 1 2 3 4

Suitable indicator:

Conc. of acid (if needed):....



Titration number: 1 2 3 4

Suitable indicator: .....

Conc. of acid (if needed):

# **Buffer solutions**

A buffer solution is a solution that resists a change in pH when a small quantity of acid or base is added.

| <ul> <li>(a) A buffer solution is made by mixing 0.510 mol of methanoic acid with 0.450 mol of sodium methanoate in 500 cm³ of water.</li> <li>(i) Write an equation to represent the equilibrium established in the buffer solution.</li> <li>(1 mark</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii) Calculate the pH of the buffer solution formed. (p $K_a$ for methanoic acid = 3.75) (3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (b) Explain how this buffer resists change in pH on; (i) addition of a small quantity of acid. (1 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (ii) addition of a small quantity of base.<br>(1 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>2. Mark and Karen are carrying out a science project on the application of buffer solutions in the human body. They have discovered that a buffer of carbonic acid (H<sub>2</sub>CO<sub>3</sub>) and hydroger carbonate (HCO<sub>3</sub>-) is present in blood plasma to maintain a pH of between 7.35 and 7.45.</li> <li>(a) They would like to recreate a similar buffer solution in the laboratory. In what proportions should they mix 0.150 mol dm<sup>-3</sup> solutions of carbonic acid and sodium hydrogen carbonate to give a buffer solution with a pH of 7.40? (K<sub>a</sub> for H<sub>2</sub>CO<sub>3</sub> is 4.5 to 10<sup>-7</sup> mol dm<sup>-3</sup>).</li> <li>(2 marks)</li> </ul> |
| (b) Why do you think buffer solutions are needed in the human body? (2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



**More complex buffer calculations**Scientists wish to investigate whether certain bacteria can adapt to live in acidic conditions.

| 1.  | The scientists make up a buffer solution, by mixing 15.0 cm <sup>3</sup> of a                                                                                                                                                                                                                                   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1 | 00 mol dm <sup>-3</sup> aqueous solution of NaOH with 35.0 cm³ of a                                                                                                                                                                                                                                             |
| 0.1 | 50 mol dm <sup>-3</sup> solution of propanoic acid. Calculate the pH of the buffer solution formed.                                                                                                                                                                                                             |
| (Ka | for propanoic acid has the value $1.35 \times 10^{-5} \; \text{mol dm}^{-3}$ )                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     | (4 marks)                                                                                                                                                                                                                                                                                                       |
| 2.  | The scientists wish to test if the solution formed is indeed a buffer solution and will resist change in pH on the addition of small quantities of acid or base possibly formed by the bacteria. They take two separate 10 cm <sup>3</sup> aliquots of the buffer solution formed in question <b>1</b> and add; |
|     | (a) 0.5 cm <sup>3</sup> of a 0.05 mol dm <sup>-3</sup> solution of hydrochloric acid to one of the aliquots, and                                                                                                                                                                                                |
|     | (b) $0.5~{\rm cm^3}$ of a $0.05~{\rm mol}~{\rm dm^{-3}}$ solution of calcium hydroxide to the other aliquot.                                                                                                                                                                                                    |
|     | Calculate the pH of each of the new solutions formed.                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                 |



### Acids and bases - Answers

- (1 mark for all numbers correct)

- **2.** (a) pH = 10.00
  - (b) pH = 2.70
  - (c) pH = 2.46

(3 marks, 1 mark for each correct answer given to 2 dp)

- 3. (a) Ionisation of water is endothermic ( $\Delta H$  +ive) so increasing the temperature will favour the forward reaction and hence the [H+(aq)] will increase. As a result the <u>pH of the water will decrease</u> as the temperature is increased.
  - (1 mark)

- (b)
- (i) 10 °C,  $K_w = 0.29 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ ;  $[H^+(aq)] = 5.39 \times 10^{-8} \text{ mol dm}^{-3}$   $\therefore pH = 7.27$
- (ii) 25 °C,  $K_w = 1.01 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ ;  $[H^+(aq)] = 1.00 \times 10^{-7} \text{ mol dm}^{-3}$   $\therefore pH = 7.00$
- (iii) 40 °C,  $K_{\rm w} = 2.92 \times 10^{-14} \, {\rm mol^2 \, dm^{-6}}; \, [{\rm H^+(aq)}] = 1.71 \times 10^{-7} \, {\rm mol \, dm^{-3}} \, \therefore \, {\rm pH} = 6.77$

(3 marks)

(c) As the temperature decreases, water remains neutral

(1 mark)

Water is always neutral as  $[H^+(aq)] = [OH^-(aq)]$  and so there is always an equal number of  $H^+$  ions and  $OH^-$  ions.

# pH and acids

- 1. (a)  $HCI \rightarrow H^+ + \underline{CI}^-$ 
  - (b)  $NH_4^+ \rightleftharpoons H^+ + \underline{NH_3}$
  - (c)  $HCO_3^- \rightleftharpoons H^+ + \underline{CO_3^2}$

(3 marks)

**2.** (a) pH =  $-\log[0.25] = 0.60$ 

(1 mark)

(b) 
$$K_a = [H^+][SO_4^{2-}] = [H^+]^2$$
  $\therefore [H^+]^2 = (1.0 \times 10^{-2}) \times 0.004 = 4 \times 10^{-5}$   
 $[HSO_4^-]$   $[H^+] = 6.32 \times 10^{-3} \text{ mol dm}^{-3}$   
 $\therefore pH = -log[6.32 \times 10^{-3}]$ 

∴ pH = 2.20

(1 mark for  $K_a$  expression, 1 mark for pH)

3. (a) 
$$[H^+] = 10^{-0.65}$$
 ::  $[H^+] = 0.22$  mol dm<sup>-3</sup> ::  $[HCI] = 0.22$  mol dm<sup>-3</sup> (1 mark)

(b)  $[H^+] = 10^{-2.61}$  :  $[H^+] = 2.45 \times 10^{-3}$  mol dm<sup>-3</sup>

 $H_2SO_4 \rightarrow 2 \text{ H}^+ + SO_4^{2-} \text{ and } \therefore [H_2SO_4] = [H^+]/2 = \underline{1.23 \times 10^{-3} \text{ mol dm}^{-3}}$ 

(1 mark)

(c) 
$$CH_3COOH \rightleftharpoons H^+ + CH_3COO^- : K_a = [H^+][CH_3COO^-] = [H^+]^2$$
 [CH3COOH]

 $pH = -log[H^+]$ , ::  $[H^+] = 10^{-3.40}$ , ::  $[H^+] = 3.98 \times 10^{-4} \text{ mol dm}^{-3}$ 

(1 mark)

$$\therefore 1.7 \times 10^{-5} = [3.98 \times 10^{-4}]^2 / [CH_3COOH]$$

∴ [CH<sub>3</sub>COOH] = 
$$9.32 \times 10^{-3} \text{ mol dm}^{-3}$$

# pH and bases

1. (a) A Brønsted-Lowry acid is a proton donor

(1 mark)

(b) A Brønsted-Lowry base is a proton acceptor

(1 mark)

2. (a)  $2 \underline{NH}_3 + H_2SO_4 \rightarrow (NH_4^+)_2 SO_4^{2-}$  Basic species =  $\underline{NH}_3$ 

(b)  $Ca(OH)_2 + H_2CO_3 \rightarrow CaCO_3 + 2 H_2O$  Basic species =  $OH^-$ 

(c) Na<sub>2</sub>CO<sub>3</sub> + 2 HCl  $\rightarrow$  2 NaCl + H<sub>2</sub>O + CO<sub>2</sub> Basic species =  $\frac{\text{CO}_3^2}{\text{CO}_3}$ 

(3 marks)

3. (a) [NaOH] = 0.150 mol dm<sup>-3</sup> and  $\therefore$  [OH<sup>-</sup>] = 0.150 mol dm<sup>-3</sup>

$$\therefore 1 \times 10^{-14} = [H^+][0.150]$$
 and so,  $[H^+] = 6.67 \times 10^{-14}$  mol dm<sup>-3</sup>

$$\therefore$$
 pH =  $-\log[6.67 \times 10^{-14}] = 13.18$ 

(1 mark)

(b)  $[Mg(OH)_2] = 0.261 \text{ mol dm}^{-3} \text{ and } : [OH^-] = 0.261 \times 2 = 0.522 \text{ mol dm}^{-3}$ 

$$\therefore 1 \times 10^{-14} = [H^{+}][0.522]$$
 and so,  $[H^{+}] = 1.92 \times 10^{-14}$  mol dm<sup>-3</sup>

$$\therefore$$
 pH =  $-\log[1.92 \times 10^{-14}] = 13.72$ 

(1 mark)

**4.** (a)  $11.00 = -\log[H^+]$  and  $\therefore [H^+] = 1.00 \times 10^{-11} \text{ mol dm}^{-3}$ 

$$\therefore 1.00 \times 10^{-14} = [1.00 \times 10^{-11}][OH^{-}]$$
 and so,  $[OH^{-}] = 1.00 \times 10^{-3}$  mol dm<sup>-3</sup>

 $\therefore$  [KOH] = 1.00 × 10<sup>-3</sup> mol dm<sup>-3</sup>

(1 mark)

(b)  $10.45 = -\log[H^+]$  and  $\therefore [H^+] = 3.55 \times 10^{-11}$  mol dm<sup>-3</sup>

$$\therefore 1.00 \times 10^{-14} = [3.55 \times 10^{-11}][OH^{-}]$$
 and so,  $[OH^{-}] = 2.82 \times 10^{-4}$  mol dm<sup>-3</sup>

Since 1 mol of  $Ca(OH)_2$  contains 2 mol  $OH^-$ ,  $[Ca(OH)_2] = 1.41 \times 10^{-4}$  mol dm<sup>-3</sup>

(1 mark)

5.



### **Acid-base titrations**



Titration number: 1 2 3 4

Suitable indicator: phenolphthalein

or methyl orange

Conc. of acid (if needed):

NaOH + HCI → NaCI + H2O

Moles in 25 cm<sup>3</sup> 0.100 mol dm<sup>-3</sup> NaOH =  $2.5 \times 10^{-3}$  Volume of HCl needed for neutralisation =  $14 \text{ cm}^3$  Conc. of HCl =  $2.5 \times 10^{-3} / 0.014 \text{ dm}^3 = \underline{0.18 \text{ mol dm}^{-3}}$ 



Titration number: 1 2 3 4

Suitable indicator: phenolphthalein

Conc. of acid (if needed):

KOH + HCOOH → HCOO-K+ + H2O

Moles in 25 cm<sup>3</sup> 0.100 mol dm<sup>-3</sup> KOH = 2.5 × 10<sup>-3</sup>

Volume of HCOOH needed for neutralisation =  $42 \text{ cm}^3$ Conc. of HCOOH =  $2.5 \times 10^{-3} / 0.042 \text{ dm}^3$ 

= 0.060 mol dm<sup>-3</sup>



Titration number: 1 2 3 4

Suitable indicator: methyl orange

Conc. of acid (if needed): N/A



Titration number: 1 2 3 4

Suitable indicator: none

Conc. of acid (if needed): N/A

(1 mark for correct identification of each titration, 1 mark for each suitable indicator named, 1 mark for each calculation of acid concentration)



#### **Buffer solutions**

**1.** (a) (i) 
$$HCOOH(aq) \rightleftharpoons HCOO^{-}(aq) + H^{+}(aq)$$

(1 mark)

(ii) 
$$pK_a = -\log K_a$$
,  $\therefore K_{\underline{a}} = 10^{-3.75} = 1.78 \times 10^{-4} \text{ mol dm}^{-3}$ 

(1 mark)

$$K_a = [HCOO^{-}(aq)][H^{+}(aq)]$$

$$\overline{[HCOOH(aq)]}$$

 $[HCOO^{-}(aq)] = 0.450 \text{ mol } / 0.5 \text{ dm}^{3} = 0.90 \text{ mol dm}^{-3}$  $[HCOOH(aq)] = 0.510 \text{ mol } / 0.5 \text{ dm}^{3} = 1.02 \text{ mol dm}^{-3}$ 

Substituting these values in we get, 1.78 ×  $10^{-4}$  mol dm<sup>-3</sup> = 0.90 × [H<sup>+</sup>(aq)] / 1.02

$$\therefore$$
 [H<sup>+</sup>(aq)] = 2.02 × 10<sup>-4</sup> mol dm<sup>-3</sup>

(1 mark)

∴ 
$$pH = 3.70$$

(1 mark)

- (b) (i) On the addition of  $H^+$  ions, according to Le Châtelier's principle, the equilibrium shifts to the left to remove the extra  $H^+$  ions added and maintain the pH approximately constant.
  - (1 mark)
- (ii) On the addition of OH<sup>-</sup> ions, the OH<sup>-</sup> ions react with the HCOOH to produce water molecules and more HCOO<sup>-</sup>:

$$HCOOH + OH^- \rightarrow HCOO^- + H_2O$$

This removes the OH<sup>-</sup> and so the pH remains approximately constant.

(1 mark)

**2.** (a) 
$$H_2CO_3(aq) \rightleftharpoons HCO_3(aq) + H^+(aq)$$
 pH of desired buffer = 7.40, so  $[H^+(aq)] = 10^{-7.40} = 3.98 \times 10^{-8}$  mol dm<sup>-3</sup>

(1 mark)

$$K_a = [HCO_3^{-}(aq)][H^{+}(aq)] / [H_2CO_3(aq)]$$

$$(HCO_3^{-}(aq)) = K = 4.5 \times 10^{-7} \text{ mol dm}^{-3} = 11.3$$

$$(H2CO3(aq) (H+(aq)) = 3.98 \times 10-8 \text{ mol dm}^{-3} = 11.3$$

Since both stock solutions are of an equal concentration they should mix the two in a ratio of  $11.3:1\ HCO_2^-:H_2CO_3$ 

(b) Many reactions in the human body rely on <u>enzymes</u>. Enzymes work only under very precise conditions. If the pH moves outside of a narrow range, the <u>enzymes slow or stop</u> working and can be denatured. Hence maintaining a constant pH is essential.

(2 marks)



# More complex buffer calculations

1.  $CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COO^-Na^+ + H_2O$ Moles of NaOH = 0.015 dm<sup>3</sup> × 0.100 mol dm<sup>-3</sup> = 1.5 × 10<sup>-3</sup> mol

(1 mark)

 $\therefore$  moles of CH<sub>3</sub>CH<sub>2</sub>COOH will decrease by 1.5  $\times$  10<sup>-3</sup> mol and moles of CH<sub>3</sub>CH<sub>2</sub>COO<sup>-</sup>Na<sup>+</sup> will increase by 1.5  $\times$  10<sup>-3</sup> mol.

(1 mark)

Initial moles 
$$CH_3CH_2COOH \rightleftharpoons CH_3CH_2COO^- + H^+$$
 $0.035 \ dm^3 \times 0.150 \ mol$ 
 $0 \ mol$ 
 $0 \ mol$ 
 $0 \ mol$ 
 $0 \ mol$ 

Change in  $-1.5 \times 10^{-3} \ mol$ 
 $0 \ mol$ 

$$K_{\rm a} = [{\rm CH_3CH_2COO^-}][{\rm H^+}] = \frac{(1.5 \times 10^{-3} \ {\rm mol} \ / \ 0.05 \ {\rm dm^3}) \times [{\rm H^+}] = 1.35 \times 10^{-5} \ {\rm mol} \ {\rm dm^{-3}}}{(3.75 \times 10^{-3} \ {\rm mol} \ / \ 0.05 \ {\rm dm^3})}$$

 $\therefore$  [H<sup>+</sup>] = 3.38  $\times$  10<sup>-5</sup> mol dm<sup>-3</sup>

pH = 4.47

(1 mark)

- 2. In a 10 cm<sup>3</sup> aliquot (= 1/5 th) of the buffer solution made above; moles of  $CH_3CH_2COOH = 7.5 \times 10^{-4}$  mol; moles of  $CH_3CH_2COO^- = 3.0 \times 10^{-4}$  mol
- (a) No. of moles of acid added =  $0.0005~dm^3 \times 0.05~mol~dm^{-3}$  =  $2.5 \times 10^{-5}~mol~CH_3CH_2COO^- + H^+ \rightarrow CH_3CH_2COOH$
- $\therefore$  moles of CH<sub>3</sub>CH<sub>2</sub>COOH will increase by 2.5  $\times$  10<sup>-5</sup> mol and moles of CH<sub>3</sub>CH<sub>2</sub>COO<sup>-</sup> will decrease by 2.5  $\times$  10<sup>-5</sup> mol.

(1 mark)

∴ [H<sup>+</sup>] =  $3.80 \times 10^{-5} \text{ mol dm}^{-3}$ 

∴ pH = 4.42



(b) No. of moles of Ca(OH)<sub>2</sub> added =  $0.0005 \text{ dm}^3 \times 0.05 \text{ mol dm}^{-3} = 2.5 \times 10^{-5} \text{ mol}$ 

$$\therefore$$
 no. of moles of OH<sup>-</sup> added =  $2 \times 2.5 \times 10^{-5}$  mol =  $5.0 \times 10^{-5}$  mol

(1 mark)

$$CH_3CH_2COOH + OH^- \rightarrow CH_3CH_2COO^- + H_2O$$

 $\therefore$  moles of CH3CH2COOH will decrease by  $5.0\times10^{-5}$  mol and moles of CH3CH2COO $^-$  will increase by  $5.0\times10^{-5}$  mol.

(1 mark)

**C**hange in moles 
$$-5.0 \times 10^{-5}$$
 mol  $+5.0 \times 10^{-5}$ 

Equilibrium moles 
$$7.0 \times 10^{-4} \text{ mol}$$
  $3.5 \times 10^{-4} \text{ mol}$  ?

$$\therefore 1.35 \times 10^{-5} \,\text{mol dm}^{-3} = \frac{(3.5 \times 10^{-4} \,\text{mol} \,/\, 0.0105 \,\text{dm}^3) \times [\text{H}^+]}{(7.0 \times 10^{-4} \,\text{mol} \,/\, 0.0105 \,\text{dm}^3)}$$

 $\therefore$  [H<sup>+</sup>] = 2.7 × 10<sup>-5</sup> mol dm<sup>-3</sup>

∴ pH = 4.57

