Acids and bases
 pH and $K_{\text {w }}$

1. Complete the table below showing some numbers and their common logarithmic values; (1 mark)

Number (n)	$\boldsymbol{l o g}_{10} \boldsymbol{n}$
0.001	$\ldots \ldots \ldots \ldots$
0.1	$\ldots \ldots \ldots .$.
$\ldots \ldots \ldots \ldots .$.	0
$\ldots \ldots$	3

2. Calculate the pH (to 2 dp) of each of the solutions below: (3 marks)
(a) $\begin{gathered}{\left[\mathrm{H}^{+}\right]=} \\ 1.00 \times 10^{-10}\end{gathered} \quad \mathrm{pH}=\ldots$
(b) $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=} \\ & 0.200 \times 10^{-2}\end{aligned} \quad \mathrm{pH}=\ldots$
(c) $\begin{gathered}{\left[\mathrm{H}^{+}\right]=} \\ 3.50 \times 10^{-3}\end{gathered} \mathrm{pH}=\ldots \ldots$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$
$\mathrm{mol} \mathrm{dm}^{-3}$
$\mathrm{mol} \mathrm{dm}^{-3}$
3. As water is always slightly ionised, we can write the following equilibrium for water;

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \Delta \mathrm{H}=+ \text { ive }
$$

As only a very small amount of the water is ionised, we define a new equilibrium constant for this equilibrium called the ionic product of water, $\boldsymbol{K}_{\mathbf{w}}$;

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]
$$

Like any other equilibrium constant, the value of K_{w} depends on the temperature of the equilibrium.
(a) Predict what effect increasing the temperature will have on the pH of pure water.
(b) Calculate the pH of pure water (to 2 dp) at each of the temperatures below;
(i) $10^{\circ} \mathrm{C}, K_{\mathrm{w}}=0.29 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
(ii) $25^{\circ} \mathrm{C}, K_{w}=1.01 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
(iii) $40^{\circ} \mathrm{C}, K_{\mathrm{w}}=2.92 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
(c) Complete the paragraph below;

As the temperature decreases, water becomes (more acidic / less acidic / remains neutral). Explain your answer

pH and acids

1. Identify the species formed when the following act as acids;
(a) HCl
(b) $\mathrm{NH}_{4}{ }^{+}$
\qquad
(c) HCO_{3} \qquad
2. Calculate the pH (to 2 dp) of the following acids;
(a) $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
(b) $0.004 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaHSO}_{4}, K_{\mathrm{a}}$ of $\mathrm{HSO}_{4}^{-}=1.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
\qquad
\qquad
\qquad
3. Calculate the concentration of the following acids given their pH .
(a) $\mathrm{HCl}, \mathrm{pH} 0.65$
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{pH} 2.61$ \qquad
(c) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{pH} 3.40, K_{\mathrm{a}} 1.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$

pH and bases

1. Define;
(a) a Brønsted-Lowry acid
(b) a Brønsted-Lowry base
2. In the following acid-base reactions identify the reactant species (ion or molecule) acting as a Brønsted-Lowry base;
(a) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}{ }^{+}\right)_{2} \mathrm{SO}_{4}{ }^{2-}$
(b) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
3. Calculate the pH (to 2 dp) of the following basic solutions (take K_{w} to be $1.00 \times 10^{-14} \mathrm{~mol}^{2}$ dm^{-6});
(a) $0.150 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$
(b) $0.261 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Mg}(\mathrm{OH})_{2}$
4. Calculate the concentration of the following basic solutions (take K_{w} to be $1.00 \times 10^{-}$ ${ }^{14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$);
(a) $\mathrm{KOH}, \mathrm{pH} 11.00$
\qquad
(b) $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{pH} 10.45$
5. Ethylamine is a weak base. Draw a curly arrow on the diagram below to show how the ethylamine acts as a base.

Acid-base tritrations

Some students are carrying out an investigation into the neutralisation reactions between strong acids and bases and weak acids and bases.
They titrate $25 \mathrm{~cm}^{3}$ samples of four different bases against four different acids as shown in the table below.
For each of the titrations 1-4;
(a) Choose the correct titration curve from those shown below,
(b) Name a suitable indicator for the titration,
(c) For titrations 1 and 2, calculate the concentration of the acid.

Titration	Base	Acid
$\mathbf{1}$	$0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$	HCl
$\mathbf{2}$	$0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$	HCOOH
$\mathbf{3}$	$0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{3}$ solution	HNO_{3}
$\mathbf{4}$	$0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaHCO}_{3}$	$\mathrm{CH}_{3} \mathrm{COOH}$

Titration number: $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
Suitable indicator:
Conc. of acid (if needed): \qquad

Titration number: $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
Suitable indicator: \qquad
Conc. of acid (if needed) \qquad

Titration number: $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
Suitable indicator: \qquad
Conc. of acid (if needed): \qquad

Titration number: $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
Suitable indicator: \qquad
Conc. of acid (if needed): \qquad

Buffer solutions

A buffer solution is a solution that resists a change in pH when a small quantity of acid or base is added.

1. (a) A buffer solution is made by mixing 0.510 mol of methanoic acid with 0.450 mol of sodium methanoate in $500 \mathrm{~cm}^{3}$ of water.
(i) Write an equation to represent the equilibrium established in the buffer solution.
(ii) Calculate the pH of the buffer solution formed. ($\mathrm{p} K_{\mathrm{a}}$ for methanoic acid $=3.75$)
(b) Explain how this buffer resists change in pH on;
(i) addition of a small quantity of acid.
(ii) addition of a small quantity of base.
\qquad
\qquad
2. Mark and Karen are carrying out a science project on the application of buffer solutions in the human body. They have discovered that a buffer of carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ and hydrogen carbonate $\left(\mathrm{HCO}_{3}{ }^{-}\right)$is present in blood plasma to maintain a pH of between 7.35 and 7.45.
(a) They would like to recreate a similar buffer solution in the laboratory. In what proportions should they mix $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of carbonic acid and sodium hydrogen carbonate to give a buffer solution with a pH of 7.40 ? $\left(K_{\mathrm{a}}\right.$ for $\mathrm{H}_{2} \mathrm{CO}_{3}$ is $4.5 \times$ $10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$).
(b) Why do you think buffer solutions are needed in the human body?
\qquad
\qquad
\qquad

More complex buffer calculations

Scientists wish to investigate whether certain bacteria can adapt to live in acidic conditions.

1. The scientists make up a buffer solution, by mixing $15.0 \mathrm{~cm}^{3}$ of a
$0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of NaOH with $35.0 \mathrm{~cm}^{3}$ of a
$0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of propanoic acid. Calculate the pH of the buffer solution formed.
(K_{a} for propanoic acid has the value $1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(4 marks)
2. The scientists wish to test if the solution formed is indeed a buffer solution and will resist change in pH on the addition of small quantities of acid or base possibly formed by the bacteria. They take two separate $10 \mathrm{~cm}^{3}$ aliquots of the buffer solution formed in question 1 and add;
(a) $0.5 \mathrm{~cm}^{3}$ of a $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrochloric acid to one of the aliquots, and
(b) $0.5 \mathrm{~cm}^{3}$ of a $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of calcium hydroxide to the other aliquot.

Calculate the pH of each of the new solutions formed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Acids and bases - Answers

1.

Number (\boldsymbol{n})	$\log _{10} \boldsymbol{n}$
0.001	$\underline{-3}$
0.1	$\underline{-1}$
$\underline{1}$	0
$\underline{1,000}$	3

2. (a) $\mathrm{pH}=10.00$
(b) $\mathrm{pH}=2.70$
(c) $\mathrm{pH}=2.46$
(3 marks, 1 mark for each correct answer given to 2 dp)
3. (a) lonisation of water is endothermic ($\Delta \mathrm{H}+\mathrm{ive}$) so increasing the temperature will favour the forward reaction and hence the $[\mathrm{H}+(\mathrm{aq})]$ will increase. As a result the pH of the water will decrease as the temperature is increased.
(b)
(i) $10^{\circ} \mathrm{C}, K_{\mathrm{w}}=0.29 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} ;\left[\mathrm{H}^{+}(\mathrm{aq})\right]=5.39 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3} \therefore \mathrm{pH}=7.27$
(ii) $25^{\circ} \mathrm{C}, K_{\mathrm{w}}=1.01 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} ;\left[\mathrm{H}^{+}(\mathrm{aq})\right]=1.00 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3} \therefore \mathrm{pH}=7.00$
(iii) $40^{\circ} \mathrm{C}, K_{\mathrm{w}}=2.92 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} ;\left[\mathrm{H}^{+}(\mathrm{aq})\right]=1.71 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3} \therefore \mathrm{pH}=6.77$
(3 marks)
(c) As the temperature decreases, water remains neutral

Water is always neutral as $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ and so there is always an equal number of H^{+}ions and OH^{-}ions.

pH and acids

1. (a) $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\underline{\mathrm{Cl}^{-}}$
(b) $\mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NH}_{3}$
(c) $\quad \mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+{\underline{\mathrm{CO}_{3}}}^{2-}$
(3 marks)
2. (a) $\mathrm{pH}=-\log [0.25]=0.60$
(1 mark)
(b) $\quad K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}{ }^{2}\right]=\left[\mathrm{H}^{+}\right]^{2} \quad \therefore\left[\mathrm{H}^{+}\right]^{2}=\left(1.0 \times 10^{-2}\right) \times 0.004=4 \times 10^{-5}$ $\left[\mathrm{HSO}_{4}{ }^{-}\right] \quad\left[\overline{\mathrm{HSO}_{4}}\right] \quad\left[\mathrm{H}^{+}\right]=6.32 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore \mathrm{pH}=-\log \left[6.32 \times 10^{-3}\right]$
$\therefore \mathrm{pH}=2.20$
(1 mark for K_{a} expression, 1 mark for pH)
3. (a) $\left[\mathrm{H}^{+}\right]=10^{-0.65} \therefore\left[\mathrm{H}^{+}\right]=0.22 \mathrm{~mol} \mathrm{dm}^{-3} \therefore[\mathrm{HCl}]=0.22 \mathrm{~mol} \mathrm{dm}^{-3} \quad$ (1 mark)
(b) $\quad\left[\mathrm{H}^{+}\right]=10^{-2.61} \quad \therefore\left[\mathrm{H}^{+}\right]=2.45 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$ and $\therefore\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\left[\mathrm{H}^{+}\right] / 2=\underline{1.23 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}}$
(1 mark)
(c) $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \therefore \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right]^{2}$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \quad\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right], \therefore\left[\mathrm{H}^{+}\right]=10^{-3.40}, \therefore\left[\mathrm{H}^{+}\right]=3.98 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(1 mark)
$\therefore 1.7 \times 10^{-5}=\left[3.98 \times 10^{-4}\right]^{2} /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
$\therefore\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=9.32 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

pH and bases

1. (a) A Brønsted-Lowry acid is a proton donor
(b) A Brønsted-Lowry base is a proton acceptor
2. (a) $2 \underline{N H}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}{ }^{+}\right)_{2} \mathrm{SO}_{4}{ }^{2-} \quad$ Basic species $=\underline{N H}_{3}$
(b) $\mathrm{Ca}(\underline{\mathrm{OH}})_{2}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \quad$ Basic species $=\underline{\mathrm{OH}^{-}}$
(c) $\mathrm{Na}_{2}{\underline{\mathrm{CO}_{3}}}^{2}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Basic species $={\underline{\mathrm{CO}_{3}}}^{2-}$
3. (a) $[\mathrm{NaOH}]=0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ and $\therefore\left[\mathrm{OH}^{-}\right]=0.150 \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right][0.150]$ and so, $\left[\mathrm{H}^{+}\right]=6.67 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore \mathrm{pH}=-\log \left[6.67 \times 10^{-14}\right]=\underline{13.18}$
(b) $\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]=0.261 \mathrm{~mol} \mathrm{dm}^{-3}$ and $\therefore\left[\mathrm{OH}^{-}\right]=0.261 \times 2=0.522 \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right][0.522]$ and so, $\left[\mathrm{H}^{+}\right]=1.92 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore \mathrm{pH}=-\log \left[1.92 \times 10^{-14}\right]=\underline{13.72}$
4. (a) $11.00=-\log \left[\mathrm{H}^{+}\right]$and $\therefore\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-11} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore 1.00 \times 10^{-14}=\left[1.00 \times 10^{-11}\right]\left[\mathrm{OH}^{-}\right]$and so, $\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore[\mathrm{KOH}]=1.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
(b) $10.45=-\log \left[\mathrm{H}^{+}\right]$and $\therefore\left[\mathrm{H}^{+}\right]=3.55 \times 10^{-11} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore 1.00 \times 10^{-14}=\left[3.55 \times 10^{-11}\right]\left[\mathrm{OH}^{-}\right]$and so, $\left[\mathrm{OH}^{-}\right]=2.82 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
Since 1 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ contains $2 \mathrm{~mol} \mathrm{OH}^{-},\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=1.41 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(1 mark)
5.

Acid-base titrations

Titration number: $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
Suitable indicator: phenolphthalein or methyl orange

Conc. of acid (if needed):

$$
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Moles in $25 \mathrm{~cm}^{3} 0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}=2.5 \times 10^{-3}$
Volume of HCl needed for neutralisation $=14 \mathrm{~cm}^{3}$
Conc. of $\mathrm{HCl}=2.5 \times 10^{-3} / 0.014 \mathrm{dm}^{3}=\underline{0.18 \mathrm{~mol} \mathrm{dm}^{-3}}$

Titration number: $\begin{array}{llll}1 & \underline{2} & 3 & 4\end{array}$
Suitable indicator: phenolphthalein
Conc. of acid (if needed):

$$
\mathrm{KOH}+\mathrm{HCOOH} \rightarrow \mathrm{HCOO}^{-} \mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

Moles in $25 \mathrm{~cm}^{3} 0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}=2.5 \times 10^{-3}$
Volume of HCOOH needed for neutralisation $=42 \mathrm{~cm}^{3}$
Conc. of $\mathrm{HCOOH}=2.5 \times 10^{-3} / 0.042 \mathrm{dm}^{3}$

$$
=\underline{0.060 \mathrm{~mol} \mathrm{dm}^{-3}}
$$

Titration number: $\begin{array}{lllll}1 & 2 & \underline{3} & 4\end{array}$

Suitable indicator: methyl orange
Conc. of acid (if needed): N/A

Titration number: $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
Suitable indicator: none
Conc. of acid (if needed): N/A
(1 mark for correct identification of each titration,
1 mark for each suitable indicator named,
1 mark for each calculation of acid concentration)

Buffer solutions

1. (a) (i) $\mathrm{HCOOH}(\mathrm{aq}) \rightleftharpoons \mathrm{HCOO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
(ii) $\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}, \therefore \underline{K}_{\mathrm{a}}=10^{-3.75}=1.78 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{HCOO}^{-}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]}{[\mathrm{HCOOH}(\mathrm{aq})]}
$$

$\left[\mathrm{HCOO}^{-}(\mathrm{aq})\right]=0.450 \mathrm{~mol} / 0.5 \mathrm{dm}^{3}=0.90 \mathrm{~mol} \mathrm{dm}^{-3}$
$[\mathrm{HCOOH}(\mathrm{aq})]=0.510 \mathrm{~mol} / 0.5 \mathrm{dm}^{3}=1.02 \mathrm{~mol} \mathrm{dm}^{-3}$
Substituting these values in we get, $1.78 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}=0.90 \times\left[\mathrm{H}^{+}(\mathrm{aq})\right] / 1.02$
$\therefore\left[\mathrm{H}^{+}(\mathrm{aq})\right]=2.02 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore \mathrm{pH}=3.70$
(b) (i) On the addition of H^{+}ions, according to Le Châtelier's principle, the equilibrium shifts to the left to remove the extra H^{+}ions added and maintain the pH approximately constant.
(ii) On the addition of OH^{-}ions, the OH^{-}ions react with the HCOOH to produce water molecules and more HCOO^{-};

$$
\mathrm{HCOOH}+\mathrm{OH}^{-} \rightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

This removes the OH^{-}and so the pH remains approximately constant.
2. (a) $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
pH of desired buffer $=7.40$, $\mathrm{so}\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-7.40}=3.98 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})\right]} \\
& \therefore \quad \underset{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]}{[\mathrm{H} 2 \mathrm{CO} 3(\mathrm{aq})}=\frac{K}{[\mathrm{H}+(\mathrm{aq})]}=\frac{4.5 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}}{3.98 \times 10-8 \mathrm{~mol} \mathrm{dm}-3}=\frac{11.3}{1}
\end{aligned}
$$

Since both stock solutions are of an equal concentration they should mix the two in a ratio of 11.3: $1 \mathrm{HCO}_{2}{ }^{-}: \mathrm{H}_{2} \mathrm{CO}_{3}$
(b) Many reactions in the human body rely on enzymes. Enzymes work only under very precise conditions. If the pH moves outside of a narrow range, the enzymes slow or stop working and can be denatured. Hence maintaining a constant pH is essential.

More complex buffer calculations

1. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$

Moles of $\mathrm{NaOH}=0.015 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}=1.5 \times 10^{-3} \mathrm{~mol}$
\therefore moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ will decrease by $1.5 \times 10^{-3} \mathrm{~mol}$ and moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+}$ will increase by $1.5 \times 10^{-3} \mathrm{~mol}$.

Initial moles
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

$0.035 \mathrm{dm}^{3} \times 0.150 \mathrm{~mol}$$\rightleftharpoons \quad$| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$ | $+\mathrm{H}^{+}$ |
| :--- | :--- |
| 0 mol | 0 mol | $d m^{-3}$ $=5.25 \times 10^{-3} \mathrm{~mol}$

Change in $\quad-1.5 \times 10^{-3} \mathrm{~mol}$
$+1.5 \times 10^{-3} \quad ?$
moles
Equilibrium
$3.75 \times 10^{-3} \mathrm{~mol}$
mol
$1.5 \times 10^{-3} \mathrm{~mol}$? moles
$K_{\mathrm{a}}=\underset{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}_{3}^{-}\right]\left[\mathrm{CH}^{+} \mathrm{COOH}\right]}{\left[\mathrm{CH}^{2}\right]}=\frac{\left(1.5 \times 10^{-3} \mathrm{~mol} / 0.05 \mathrm{dm}^{3}\right) \times\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}}{\left(3.75 \times 10^{-3} \mathrm{~mol} / 0.05 \mathrm{dm}^{3}\right)}$
$\therefore\left[\mathrm{H}^{+}\right]=3.38 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore \mathrm{pH}=4.47$
2. In a $10 \mathrm{~cm}^{3}$ aliquot ($=1 / 5 \mathrm{th}$) of the buffer solution made above;
moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}=7.5 \times 10^{-4} \mathrm{~mol}$; moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}=3.0 \times 10^{-4} \mathrm{~mol}$
(a) No. of moles of acid added $=0.0005 \mathrm{dm}^{3} \times 0.05 \mathrm{~mol} \mathrm{dm}^{-3}=2.5 \times 10^{-5} \mathrm{~mol}$

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}
$$

\therefore moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ will increase by $2.5 \times 10^{-5} \mathrm{~mol}$ and moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$will decrease by $2.5 \times 10^{-5} \mathrm{~mol}$.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \quad \rightleftharpoons \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+}$

Initial moles
$7.5 \times 10^{-4} \mathrm{~mol}$
Change in moles $+2.5 \times 10^{-5} \mathrm{~mol}$
Equilibrium $\quad 7.75 \times 10^{-4} \mathrm{~mol}$
moles
$3.0 \times 10^{-4} \mathrm{~mol}$
$-2.5 \times 10^{-5} \mathrm{~mol}$?
$2.75 \times 10^{-4} \mathrm{~mol}$?
$\therefore 1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}=\frac{\left(2.75 \times 10^{-4} \mathrm{~mol} / 0.0105 \mathrm{dm}^{3}\right) \times\left[\mathrm{H}^{+}\right]}{\left(7.75 \times 10^{-4} \mathrm{~mol} / 0.0105 \mathrm{dm}^{3}\right)}$
$\therefore\left[\mathrm{H}^{+}\right]=3.80 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore \mathrm{pH}=4.42$
(b) No. of moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ added $=0.0005 \mathrm{dm}^{3} \times 0.05 \mathrm{~mol} \mathrm{dm}^{-3}=2.5 \times 10^{-5} \mathrm{~mol}$
\therefore no. of moles of OH^{-}added $=2 \times 2.5 \times 10^{-5} \mathrm{~mol}=5.0 \times 10^{-5} \mathrm{~mol}$
(1 mark)

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$

\therefore moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ will decrease by $5.0 \times 10^{-5} \mathrm{~mol}$ and moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$will increase by $5.0 \times 10^{-5} \mathrm{~mol}$.
(1 mark)

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
 $\rightleftharpoons \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$
 $+\mathrm{H}^{+}$

Initial moles
$7.5 \times 10^{-4} \mathrm{~mol}$
$3.0 \times 10^{-4} \mathrm{~mol}$

Change in moles	$-5.0 \times 10^{-5} \mathrm{~mol}$
	$+5.0 \times 10^{-5}$

Equilibrium moles $7.0 \times 10^{-4} \mathrm{~mol}$
$3.5 \times 10^{-4} \mathrm{~mol}$
?
$\therefore 1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}=\frac{\left(3.5 \times 10^{-4} \mathrm{~mol} / 0.0105 \mathrm{dm}^{3}\right) \times\left[\mathrm{H}^{+}\right]}{\left(7.0 \times 10^{-4} \mathrm{~mol} / 0.0105 \mathrm{dm}^{3}\right)}$
$\therefore\left[\mathrm{H}^{+}\right]=2.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore \mathrm{pH}=4.57$

