Organic synthesis ### **Organic transformations 1** Complete the diagram showing the reagents, conditions and mechanisms that accompany the following transformations. ### **Organic transformations 2** Complete the diagram showing the reagents, conditions and mechanisms that accompany the following transformations. | | Reagents | Conditions | Mechanism | |---|----------|------------|-----------| | CH ₃ CONH ₂ → CH ₃ CH ₂ NH ₂ (| | Х | | | CH ₃ CH ₃ | | | | | CH ₃ CH ₂ Br → CH ₃ CH ₂ NH ₂ | | | | | $H_2C=CH_2$ \longrightarrow CH_3CH_2Br (| | Х | | ## **Organic transformations 3** Complete the diagram below to show the reagents and species formed. #### **Organic synthesis – Answers** #### **Organic transformations 1** | | | Reagents | Conditions | Mechanism | |--------------------------------------|---|---|-------------------|-------------------------------| | CH ₃ CH ₂ OH → | сн₃сно (| K ₂ Cr ₂ O ₇ /H ⁺ | Distillation | X | | CH ₃ CH ₂ OH → | CH ₃ CO ₂ H (| K ₂ Cr ₂ O ₇ /H ⁺ | Reflux | х | | CH ₃ CH ₂ Br → | CH3CH2CN (| KCN | x | Nucleophilic sub ⁿ | | CH₃CO₂H → | CH ₃ CONH ₂ (| NH ₃ | x | x | | CH₃CN — | CH ₃ CH ₂ NH ₂ | LiAlH ₄ | Dry ether solvent | Nucleophilic add ⁿ | #### **Organic transformations 2** #### **Organic transformations 3**