TOTB 2024

Older Paper

Answers

Question	Mark
Section A	
8	
9	
10	
TOTAL	

SECTION A General chemistry knowledge

1. Give the number of protons, neutrons and electrons in an atom of ${ }_{18}^{40} A r$.
protons 18 neutrons $22 \quad$ electrons 18
(All three numbers need to be correct for mark)
2. Place each of the compounds below into the correct columns in Table 1 based on the type of bonding present in each.

$\mathrm{CH}_{4} \quad \mathrm{~K}$	$\mathrm{CaCl}_{2} \quad \mathrm{NH}_{3}$	NaBr

3. When chlorine is reacted with sodium bromide a displacement reaction occurs.

Complete the balanced symbol equation for the reaction.

$$
\ldots \mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2} \quad \text { (M1 correct products; } M 2 \text { balancing) }
$$

4. A student adds sodium chloride to water to form a solution. Name the solute in the process. sodium chloride \qquad
5. Identify the functional group highlighted in red in the molecule in Figure 1.

Functional group
Carboxylic acid

Figure 1
6. Aluminium reacts with chlorine to form aluminium chloride.

The equation for the reaction is;

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})
$$

What mass of aluminium chloride in grams will be formed from the reaction of 0.6 mol of aluminium with an excess of chlorine?

The relative formula mass of AlCl_{3} is 133.5
$0.6 \mathrm{~mol} \times 133.5=80.1 \mathrm{~g}$ \qquad
7. The Nobel Prize in Chemistry this year rewarded the discovery and development of quantum dots. These are nanoparticles so tiny that their size determines their properties.

How big is one nanometre in metres?
Give your answer in standard form.
$1 \times 10^{-9} \mathrm{~m}$

SECTION B Questions linked to this year's theme of Water

8. This question is about the use of water in the production of ethanol.

Ethanol is used as an important solvent in cosmetics such as aftershave and deodorants. It is also used in the manufacture of drugs, detergents, inks and coatings.

Shutterstock
Ethanol is a member of the alcohol family.
Table $\mathbf{2}$ gives the name and formula of the first four members of the alcohol family.

Name	Molecular formula
methanol	$\mathrm{CH}_{3} \mathrm{OH}$
ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
propanol	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
butanol	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$

Table 2
a. i. Which option gives the correct general formula for an alcohol?

$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{OH}$
x
$\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{OH}$

$\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{OH}$
\square $\mathrm{C}_{2 n} \mathrm{H}_{n+2} \mathrm{OH}$
ii. The displayed formula of an organic compound shows every atom and every bond in the molecule.

Draw the displayed formula of ethanol in the box below.

Both ethanol and water have an -OH group.
This means ethanol reacts with group one metals in a similar way to water.
b. i. Suggest the name of the gas produced when ethanol reacts with sodium. hydrogen \qquad
ii. Complete the balanced symbol equation for the reaction.
$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{Na} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$ or $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2}$ M1 Both products correct. Do not allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-\mathrm{Na}$ i.e. suggestion of covalent bond. M2 Equation correctly balanced

Ethanol is produced industrially by the hydration of ethene.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})
$$

The conditions used are $300^{\circ} \mathrm{C}, 65 \mathrm{~atm}$ pressure and a phosphoric acid catalyst.
c. i. Why are catalysts used in chemical reactions?

To speed up the reaction.
ii. Phosphoric acid is a triprotic acid weak acid.

A triprotic acid has 3 hydrogen ions $\left(\mathrm{H}^{+}\right)$that can be donated for each molecule of acid.
The ionisation occurs in steps, with each step resulting in the release of one H^{+}ion.

Step 1 is given below.
Complete the equations in step 2 and step 3 to show the successive ionisations.

Step 1: $\mathrm{H}_{3} \mathrm{PO}_{4} \leftrightharpoons \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

Step 2: $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \leftrightharpoons \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{2-}$

Step 3: $\mathrm{HPO}_{4}{ }^{2-} \leftrightharpoons \mathrm{H}^{+}+\mathrm{PO}_{4}{ }^{3-}$

1 mark for each correct step in full.
[Total: 8 marks]
9. This question is about the analysis of impurities in water using test tube reactions.

The presence of ions in water can be identified using precipitation reactions.
a. Which option correctly describes a precipitation reaction?
\square substances in solution are mixed and a soluble product is made.
x substances in solution are mixed and an insoluble product is made.
\square insoluble reactants are mixed and a soluble product is made

The tests for some different anions and cations in solution are shown in Table 3.

Anion		Test	Positive result
Sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$	Add HCl followed by BaCl 2	A white precipitate of BaSO_{4} forms.	
Halide ions	Cl^{-}		
	Br		A white precipitate of AgCl forms
	I^{-}		
	A yellow precipitate of AgI forms		

Cation	Test	Positive result
Copper, Cu^{2+}	Add a few drops of sodium hydroxide solution	Blue precipitate of $\mathrm{Cu}(\mathrm{OH})_{2}$
Iron, Fe^{2+}		Green precipitate of $\mathrm{Fe}(\mathrm{OH})_{2}$
Iron, Fe^{3+}		Red-brown precipitate of $\mathrm{Fe}(\mathrm{OH})_{3}$
Aluminium, Al^{3+}		White precipitate of $\mathrm{Al}(\mathrm{OH})_{3}{ }^{*}$
Magnesium, Mg^{2+}		White precipitate of $\mathrm{Mg}(\mathrm{OH})_{2}{ }^{*}$

Table 3

* Al^{3+} and Mg^{2+} both form a white precipitate when a few drops of sodium hydroxide solution are added. However the white precipitate of $\mathrm{Al}(\mathrm{OH})_{3}$ redissolves in excess NaOH to form a colourless solution.

A student analyses five samples of water known to be contaminated.
The results are shown in Table 4.

Sample	Observation on adding $\mathbf{N a O H}$ solution	Observation on adding $\mathbf{H N O}_{3} / \mathbf{A g N O}_{3}$	Observation on adding $\mathbf{H C l}^{\prime} \mathbf{B a C l}_{\mathbf{2}}$
A	Blue precipitate	No change	White precipitate
B	White precipitate that redissolves in excess	White precipitate	No change
C	No change	Yellow precipitate	No change
D	Red-brown precipitate	Cream precipitate	No change
E	Green precipitate	White precipitate	White precipitate

Table 4
b. Identify the anion present in sample A.
sulfate or $\mathrm{SO}_{4}{ }^{2-}$
c. Identify the salt dissolved in sample B.

Give the cation and the anion.
aluminium chloride or AlCl_{3}
d. Explain how the results for sample E show that the sample must be contaminated by more than one salt.

M1 Tests show solution presence of two anions / sulfate and chloride (halide) ions \qquad
M2 As each salt can only contain one anion then the sample must contain two salts \qquad
10. This question is about pure water.

Water

a. Water exists as individual molecules consisting of two hydrogen atoms and an oxygen atom covalently bonded.
i. Complete the dot and cross diagram in Figure 2 to show the bonding in a molecule of water.

M1 Shared electron pair in each overlap

M2 Four non-bonding electrons

Figure 2
ii. Explain how a covalent bond holds two atoms together.

M1 (Electrostatic) attraction between
M2 positively charged nucleus and the shared pair of electrons
iii. Figure 3 shows the bond lengths and bond angles in a molecule of water.
$\mathrm{pm}=1$ picometre $=1 \times 10^{-12} \mathrm{~m}$

Figure 3

Use Figure 3 to determine the horizontal distance between the two hydrogen atoms in picometres.

This is labelled ' a ' on the diagram.

M1 Separates shape into two right handed triangles with an angle of 52.5°
M2 $\sin 52.5^{\circ}=1 / 2 \mathrm{a} \div 96$
$1 / 2 a=76.16 \mathrm{pm}$
M3 $\mathrm{a}=152 \mathrm{pm}$

Distance ' a ' $=152$ pm
(Correct answer with no working $=3$ marks)
b. i. Calculate the number of water molecules in $1 \mathrm{~cm}^{3}$ of liquid water.

The density of liquid water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$.
1 mole of a covalent compound contains 6.02×10^{23} molecules.
$1.0 \mathrm{~cm}^{3}=1 \mathrm{~g}$
M1 Amount in mol in 1 g of water $=1 \div 18=0.0556 \mathrm{~mol}$
M2 Number of molecules $=\underline{3.34 \times 10^{22} \text { molecules }}$
(Correct answer with no working $=2$ marks)
ii. Calculate the volume occupied in cm^{3} by 1 molecule of $\mathrm{H}_{2} \mathrm{O}$ in liquid water.

Use your answer to part (i).
$1 \mathrm{~cm}^{3} \div 3.34 \times 10^{22}$ molecules $=\underline{2.99 \times 10^{-23} \mathrm{~cm}^{3}}$
Allow ecf from part (b)(i) \qquad
iii. Water expands when it is frozen.

This can lead to water pipes bursting when the water inside them freezes.
Calculate the change in volume when $1 \mathrm{dm}^{3}$ of water at $18^{\circ} \mathrm{C}$ is cooled to $-5^{\circ} \mathrm{C}$.
Assume;
The density of water at $18^{\circ} \mathrm{C}$ is $0.999 \mathrm{~g} / \mathrm{cm}^{3}$
The density of ice at $-5^{\circ} \mathrm{C}$ is $0.917 \mathrm{~g} / \mathrm{cm}^{3}$.
$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$ \qquad
M1 Mass of $1000 \mathrm{~cm}^{3}$ at $18^{\circ} \mathrm{C}=999 \mathrm{~g}$ \qquad
M2 Volume of 999 g of water at $-5^{\circ} \mathrm{C}=999 / 0.917=1089.4 \mathrm{~cm}^{3}$ \qquad
M3 Change in volume $=89.4 \mathrm{~cm}^{3}$ (allow $89 \mathrm{~cm}^{3}$) \qquad
(Correct answer with no working = 3 marks)

Pure water is slightly ionised.
An equilibrium is established between $\mathrm{H}_{2} \mathrm{O}$ molecules and H^{+}and OH^{-}ions.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Figure $\mathbf{4}$ shows how the concentration of H^{+}ions in a sample of pure water changes with temperature.

The higher the concentration of H^{+}ions the more acidic a solution.

Figure 4
c. i. Describe the trend shown by Figure 4.

The higher the temperature the higher the concentration of H^{+}ions.
ii. Predict how you would expect the pH of pure water to change as the temperature is increased.

M1 Higher temperature means higher concentration of H^{+}ions so it's more acidic
M2 and therefore will have a lower pH
iii. Explain why pure water is still neutral at all temperatures.

Because the concentration of H^{+}ions is always the same as the concentration of OH^{-}ions.

