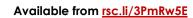


Cracking: knowledge check

1.1 The table compares the supply of crude oil fractions from fractional distillation and the demand.

Fraction	Percentage supplied from crude oil (%)	Percentage demand (%)
gases	3	6
petrol	10	27
kerosene	11	19
bitumen	12	4
diesel	15	23
fuel oil	49	21

Use the data in the table to answer the questions.


(a)	For which four fractions is the demand higher than supply?			
(b)	For which two fractions is supply higher than demand?			

1.2 Decide whether each of the statements is true or false and write your answer in the box provided.

For each statement you think is false, write out the correct version.

[Hint: Remind yourself about the functional groups of alkenes and alkanes and the differences between them.]

Review my learning 14-16 years

(a)) The process of cracking is used to break larger hydrocarbon molecules						
	into smaller	ones.				True	False
(b)	Smaller hydr	ocarbon m	nolecules c	are generally le	ess useful th	an large	r
	hydrocarbo	n molecule	es.			True	False
(c)	Saturated hy	ydrocarbor	ns contain	at least one d	ouble covo	alent bon	d
	between co	ırbon atom	ıs.			True	False
(d)	Alkenes are	saturated (compound	ds.		True	False
(e)	Alkane mole	ecules only	contain sir	ngle covalent	bonds betv	veen car	bon
	atoms.					True	False
(f)	Alkanes and	l alkenes a	re part of t	he same hom	ologous seri	ies.	
						True	False
Cho	oose from the	words prov		omplete the g	aps in the se	entences	S.
		diesel	fuels	alkenes	polymers	5	
The	process of cro	acking is us	sed to help	match the su	pply of crud	de oil fra	ctions
with	their		. ·				
				produced			d as
The	unsaturated ₋		pi	roduced are u	used in the p	petroche	mical
indu	ustry to make	other prod	ucts includ	ling medicines	s, dyes and		

1.3

Review my learning 14-16 years

Available from rsc.li/3PmRw5E

1.4 Use some of the words provided to complete the sentences describing the two types of cracking. Not all of the words will be used.

	steam	ionic	catal	yst	SIOW (nwor	
	covalent	speed	l up	smaller		larger	
	•	300℃	550°C	wate	er		
During the p	process of cr	acking so	me of the	e			bonds in the
molecules c	ıre broken to	o produce	·		al	lkanes c	and alkenes.
Catalytic cr	to v	aporise th	em. The	vapours	are p	assed c	over a
Steam crac	of zection of zec	s heating t	the hydro				
The vaporise occurs.	ed hydrocar	bons are r	mixed wi	th			and cracking

Cracking: test myself

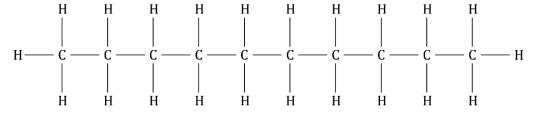
2.1 What type of reaction is cracking?

[Hint: Think about the conditions needed to break the covalent bonds.]

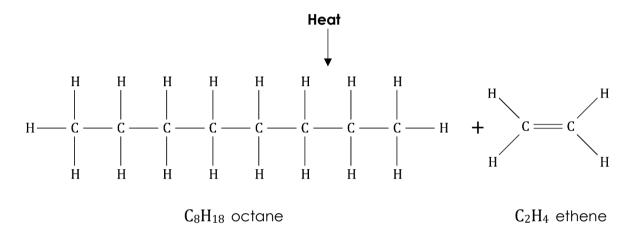
2.2 State the general molecular formula of an alkene.

[Hint: Remember, alkenes are hydrocarbons and that a general molecular formula can be used to represent any member of the same homologous series.]

2.3 This is the displayed structural formula of ethene.


$$C = C$$

How many pairs of electrons are shared in the double covalent bond?


[Hint: Think about how many electrons each carbon atom has in its outer shell to use to form covalent bonds.]

2.4 This equation represents the cracking of decane, $C_{10}H_{22}$.

 $C_{10}H_{22}$ decane

Identify which of the two products is unsaturated?

2.5 Complete the equation representing the cracking of undecane, $C_{11}H_{24}$, to produce nonane, C_9H_{20} and an unsaturated compound.

$$C_{11}H_{24} \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

2.6 The cracking of dodecane, $C_{12}H_{26}$, produces one molecule of propene, one molecule of ethene and a third alkane product.

$$C_{12}H_{26} \rightarrow \underline{\hspace{1cm}} + C_2H_4 + C_3H_6$$

State the molecular formula of the alkane product formed.

Review my learning 14-16 years

2.7 The cracking of the alkane $C_{16}H_{34}$ produces an alkane with 12 carbon atoms in each molecule and a second unsaturated product.

Complete the equation for the reaction.

[Hint: Think about the general molecular formula of the alkanes and the meaning of the term 'unsaturated'.]

 $C_{16}H_{34} \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$

2.8 Suggest two reasons why catalytic cracking is usually preferred to steam cracking.

[Hint: Think about the conditions needed for the two processes.]

Reason 1:_____

Reason 2: ______

Cracking: feeling confident?

3.1 Ethane or ethene? Complete the table comparing ethane and ethene.

The displayed structural formulas are provided to help you.

$$C = C$$

Compound	Homologous series	Molecular formula	Displayed structural formula	Number of single covalent bonds	Number of double covalent bonds
ethane					
ethene					

3.2 Alkanes that contain between 10 and 16 carbon atoms are the feedstock for steam cracking.

By varying the temperature at which cracking is carried out, chemists can control the chain length of the alkanes and alkenes produced.

The table provides information about the alkanes and alkenes produced at two different temperatures during steam cracking.

Temperature	Point at which the carbon chain breaks	Alkanes produced	Alkenes produced
higher temperature	near the end of the alkane chain	higher proportion of longer alkanes containing 10 to 14 carbons	higher proportion of smaller alkenes, ethene and propene
lower temperature	near the middle of the alkane chain	higher proportion of medium-sized alkanes such as C_8H_{18}	higher proportion of larger alkenes, such as C_8H_{16}

Use the information provided in the table to write an equation representing the cracking of $C_{14}H_{30}$ at each of the two temperatures.

[Hint: You can use the information in the table to decide on the products formed in each process, but the equations must be balanced.]

(a) Higher temperature

$$C_{14}H_{30} \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

(b) Lower temperature

$$C_{14}H_{30} \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

Cracking: what do I understand?

Think about your answers and confidence level for each mini-topic. Decide whether you understand it well, are unsure or need more help. Tick the appropriate column.

Mini-topic	l understand this well	I think I understand this	I need more help
I can compare the supply			
and demand of fractions			
produced from the			
fractional distillation of crude oil.			
I can describe the reasons			
for cracking.			
I can describe the			
production of smaller			
alkane molecules and			
alkene molecules from			
cracking.			
I can write equations to			
represent cracking.			
I can compare catalytic			
and steam cracking.			
Feeling confident? topics	I understand this well	I think I understand this	I need more help
I can describe the			
difference between			
ethane and ethene.			
I can predict products			
formed during steam			
cracking.			