14-16 years

Key terms accessible glossary: atomic model

Downloaded from rsc.li/3XTkheu, teacher notes also available.

Contents For how to use, metacognitive prompts, ideas for support and challenge and linked resources, visit: rsc.li/3XTkheu

Atomic structure

(Atomic) nucleus4	-
Atomic number5	-)
Compound	, >
Electron7	7
Electron configuration/structure8	}
Electron shell/energy level	}
Element1	0
Isotopes1	11
Mass number1	12
Molecule	13
Neutron] /

Proton	• • • • • • • •	••••	• • • • • • •	15
Relative atomic mass			• • • • • • •	16
Relative charge		• • • • • •	• • • • • • •	17
Relative mass		• • • • • •		18
Subatomic particle	• • • • • • • •			19
Atoms and ions				
Atom	•••••		•••••	.20
lon		• • • • • •	• • • • • • •	.21

Contents

Particle diagrams

Inelastic	22
Intermolecular forces	23
Kinetic energy	24
Latent heat	25
Model	26
Regular lattice	27

(Atomic) nucleus

the positively charged centre of the atom consisting of protons and neutrons

In other words...

the centre of an atom, made of protons and neutrons

Example

The nucleus of nitrogen contains 7 protons and 7 neutrons. The atomic nucleus will always be shown at the centre of any atoms in diagrams

Sign it Watch a video:

Don't confuse with...

the nucleus of a cell in biology. A cell nucleus is significantly larger than an atomic nucleus

Say it Nee-uw-clee-us

Other contexts

In physics you will study how the atomic nucleus changes during nuclear fusion and nuclear fission

Atomic number

the number of protons in the nucleus of an atom of a particular element

Example

The atomic number of carbon is six because a carbon atom has six protons in the nucleus

Don't confuse with...

number of electrons. The number of electrons will only be equal to the atomic number for neutral atoms. Ions will have a different number of electrons

Compound

a pure substance made of two or more different elements whose atoms are joined by chemical bonds; the atoms are in a fixed ratio

In other words...

two or more different elements chemically bonded

Sign it Watch a video:

Example

Water and sodium chloride are common compounds

Don't confuse with...

mixture. Not all of the atoms in a mixture will be chemically bonded together

Other contexts

In biology you will study the importance of glucose, carbon dioxide and many other compounds

Electron

a negatively charged subatomic particle with very little mass found in the electron shells/energy levels of atoms

In other words...

negative subatomic particles found within atoms

Say it Eh-lek-tron

Example

Nitrogen atoms will contain seven electrons because the atomic number of nitrogen is 7

Don't confuse with...

ion. Electrons are found within atoms and ions

Other contexts

In physics you will study electrons in the context of electrical circuits

Electron configuration (or structure)

gives the number of electrons in each shell/energy level around the nucleus of an atom

In other words...

how the electrons are arranged around the nucleus

Sign it Watch a video:

Say it Eh-lek-tron con-fig-yur-ay-shuhn

Example

The elements of group 18 (also known as group 0) have a stable electron configuration (a full outer shell)

Don't confuse with...

group number. The group number can indicate the number of electrons on the outer shell of an atom of an element. The full electron configuration represents the arrangement of all electrons across all shells

Electron shell (or energy level)

a region surrounding the nucleus of an atom where electrons are found; each level has a maximum number of electrons it can hold

found in an atom Say it Eh-lek-tron sh-ells

In other words...

where electrons are

Example

An atom of nitrogen has two electron shells, so it is located in the second period of the periodic table

Don't confuse with...

delocalised electrons. They are not in the electron shells of any particular atom. Unless they are delocalised, electrons occupy space in an electron shell/energy level

Element

Watch a video:

bit.ly/4jAYL6M

Sign it

a pure substance made of only one type of atom

Example

Oxygen, sodium and phosphorus are pure substances made of only one type of atom, so they are found on the periodic table

Other contexts

<mark>Say it</mark> Eh-le-ment In biology you will study how oxygen, carbon, nitrogen and several other elements are necessary for life

Don't confuse with...

atoms, which are the individual particles that make up an element or compound

Isotopes

atoms with the same number of protons but different numbers of neutrons

Other contexts

In physics you will study radioactive isotopes of different elements

Example

Carbon-12 and Carbon-13 are both isotopes of carbon because they have the same number of protons (6), but a different number of neutrons (6 vs 7)

Don't confuse with...

allotropes, which have the same number of subatomic particles. Isotopes have different numbers of neutrons. Neutrons are neutral, so isotopes have the same overall (neutral) charge

Mass number

the total number of protons and neutrons in the nucleus of an atom of a particular element

Molecule

two or more atoms connected by chemical bonds

Sign it Watch a video:

carbon dioxide molecule

e hydrogen molecule

Example

Carbon dioxide (CO_2), water (H_2O) and all other compounds are molecules

nitrogen molecule water molecule Don't confuse with... elements and compounds. A molecule can be either an element or a compound

Other contexts

In biology you will study many different molecules found within living organisms, such as glucose and carbon dioxide

Similar words

Molecules of gases and liquids could also be described as gas and liquid particles

Neutron

a subatomic particle with no charge and a relative mass of 1, found in the nucleus of an atom

In other words...

a neutral subatomic particle found in the nucleus

Sign it Watch a video:

Say it

Nee-uw-tron

Example

The number of neutrons in the nucleus of an atom can be calculated by subtracting the atomic number from the mass number

Don't confuse with..

negative. Neutrons have no charge. Electrons have a negative charge

Other contexts

In physics you will calculate the number of neutrons in different isotopes, in the same way that it is done in chemistry

Proton

a positively charged subatomic particle with a relative mass of 1, found in the nucleus of an atom

In other words...

a positive subatomic particle found in the nucleus

Sign it Watch a video:

Say it

Pro-ton

Example

The atomic number of nitrogen is 7 because a nitrogen atom will contain 7 protons within its atomic nucleus

Don't confuse with...

positive ion/cation – both have a positive relative charge

Other contexts

In physics you will study a similar topic about atomic structure

Relative atomic mass (A_r)

the average mass of an atom of an element taking into account the naturally occurring percentages of its isotopes

Say it Reh-lah-tiv a-tom-ik mah-ss

Similar words Relative mass

Example

The relative atomic mass of chlorine on some periodic tables is 35.5 because it is an average of the two isotopes of chlorine: chlorine-35 (³⁵Cl) and chlorine-37 (³⁷Cl)

Don't confuse with...

mass number. Relative atomic mass is an average so it can be a decimal value. An individual atom can only contain a whole number of protons and neutrons

Relative charge

the positive (+) or negative (-) charge of a particle compared to the charge of a single proton

Example

A sodium ion has 11 positive protons in the nucleus, but only 10 negative electrons, so the relative charge of the particle is +1

Don't confuse with...

relative mass. The relative charge of a particle can be positive or negative, relative mass will always be a positive value

Other contexts

Say it Reh-lah-tiv ch-ar-j

In physics you will also learn about the relative charge of protons, neutrons and electrons

will always be a positive value

Subatomic particle

a particle smaller than an atom

In other words...

small particles that make up all elements

Say it Sub-a-tom-ik par-ti-kuhl

neutron

Break it down

'Sub' means lower

Example

Protons, neutrons and electrons are subatomic particles

Don't confuse with...

atoms. Subatomic particles are what atoms are made from. They are found within the atom, not outside it

Other contexts

In physics you will encounter the same three subatomic particles that we learn about in chemistry: protons, neutrons and electrons

the smallest possible particle of an element; atoms are made up of protons, neutrons and electrons

Say	it
A-tu	hm

One individual atom of nitrogen is the smallest form of nitrogen that can exist

Don't confuse with...

ions. Atoms have an equal number of protons and electrons. Atoms can form ions when they lose or gain electrons.

Other contexts

In physics you will study similar topics about atomic structure and particles

Say it

Eye-on

a charged particle formed when one or more electrons are lost or gained from an atom or molecule

In other words...

a particle with a positive or negative charge

Sign it Watch a video:

Example

When a sodium atom loses an electron, it becomes a positively charged ion

Don't confuse with... protons (positive) or electrons (negative)

Similar words

Cations are ions with a positive charge, and anions are ions with a negative charge

Other contexts

In physics you may discuss ions when learning about electricity

Inelastic

is not flexible

In other words... will not stretch or bend

Break it down 'In' means not

Example

Metal drinks cans and glass bottles are common inelastic materials

Other contexts

An inelastic object changes shape permanently when a force is applied to it. In physics you will investigate the properties of elastic and inelastic objects

Intermolecular forces

the relatively weak attractive and repulsive forces between molecules

H)

 (\mathbf{H})

Say it In-tur-mol-leh-kyu-lar for-sez

Break it down

'Inter' means between or among

Example

The water molecules in ice are held together by attractive forces between the molecules

Don't confuse with...

chemical bonds. No covalent bonds are broken when substances made of small covalent molecules undergo melting or boiling – it is the intermolecular forces that are overcome

Other contexts

In physics you may discuss intermolecular forces when learning about the particle model

Η

Η

intermolecular

force

Kinetic energy an object has because of its motion

In other words...

the faster a particle is moving, the more kinetic energy it has

Sign it Watch a video:

Say it Kih-neh-tik eh-nur-jee

Other contexts

In physics you will calculate a value for the kinetic energy stores of moving objects

Example

When a substance is heated the particles gain a greater kinetic energy store, so they will vibrate or move faster

Don't confuse with...

movement you can visibly see. Also, the particles of a solid have kinetic energy too, not just liquids and gases

Latent heat

energy transferred to or from a substance during a change in its physical state that occurs without changing its temperature

Other contexts

In physics you will calculate the latent heat of fusion and vaporisation for different substances

Model

a simple representation of something or a way of explaining something complicated

Example

In chemistry, atoms are often modelled as circles or spheres and chemical bonds are often modelled as straight lines between atoms

Other contexts

Across all three sciences your teacher will often use models to help explain complex and abstract ideas

Regular lattice

an arrangement of repeating atoms or ions that form a 3D structure

In other words... particles arranged in a 3D repeating structure

Say it Reh-gyu-lar lah-tiss

Other contexts

In physics you will learn about the arrangement of particles in solids

Acknowledgements

Image on slide 22 © Shutterstock SSC BSL Glossaries of Curriculum Terms (https://www.ssc.education.ed.ac.uk/BSL/)

