Graphs in chemistry: diagnostic exercise

Education in Chemistry

September 2020
rsc.li/2ZzBziL

1. Rearrange the equation to make y the subject. $x=\frac{y-1}{2}$	2. Turn over this piece of paper and measure out a line 20 cm long. Along this line, make a scale which goes from 0 to 100 . What value does 1 cm on the scale represent?	3. Rearrange the equation to make Q the subject. $\Delta T=\frac{Q}{m C}$	4. A rate equation is given below: $\text { rate }=0.005 \times \text { conc }$ A graph is plotted with conc on the x-axis and rate on the y axis. a) What is the gradient of the line? b) What is the y-intercept?
5. Sketch a graph of $y=2 x-1$.	6. Determine the y values for the function $y=3(x+2)$.	7. Sketch a graph of rate $=2 \times$ conc and label the axes.	8. Determine the rate values for the function rate $=1000 \times$ conc 2.
	x y		conc ${ }^{\text {cor }}$
	0		0.01
	1		0.05
	2		0.10
	3		0.20

