Measuring density - student sheet

In this experiment you will be measuring the mass and volume of seawater and tap water and then using your data to determine the density. (Density = mass / volume)

Procedure

- 1. Place the measuring cylinder on the balance pan and tare the balance.
- 2. Carefully add 0.5 cm³ of tap water dropwise to the measuring cylinder. Record in a table the volume of water added and the mass.
- 3. Add drops of tap water until the volume is 1.0 cm³. Record the new mass.
- 4. Add water until the volume is 1.5 cm³ and record the mass.
- 5. Continue in this manner at 0.5 cm³ intervals up to 5.0 cm³ (If you cannot tare the balance, subtract the mass of the measuring cylinder each time).
- 6. Repeat the whole process using seawater.

Questions

Make a table of your results (as shown below).

	Seawater			Tap water	
Vol (cm3)	Mass (g)	Density (g cm-3)	Vol (cm3)	Mass (g)	Density (g cm-3)

On a piece of graph paper plot the volume against the mass for both tap water and seawater and draw a best line fit through each set of points. Measure the slope of these lines.

- 1. What do you notice on measuring the slope of the lines on your graph?
- 2. What are the advantages of showing your results graphically rather than just in a table?
- 3. On a piece of graph paper, plot the volume against the mass for both tap water and seawater and draw a line of best fit through each set of points. Measure the slope of these lines.
- 4. (You may wish to use a spreadsheet package to do the calculations.)

Health, safety and technical notes

There are no significant hazards associated with this experiment.

