

### **Decomposition reactions**

#### Learning objectives

- 1 Identify decomposition reactions from a word equation or symbol equation.
- 2 Use the law of conservation of mass to balance simple decomposition reactions.

#### Introduction

Decomposition reactions are a key part of our everyday lives. The decomposition of hydrogen peroxide is responsible for bleaching hair, cleaning bathrooms and making paper white, while the decomposition of sodium hydrogen carbonate (baking soda) makes cakes rise and puts the bubbles in honeycomb.

Scientists are even looking to decomposition reactions to provide alternatives to fossil fuels, with the decomposition of water providing a cleaner source of energy for hydrogen-fuelled vehicles.

This worksheet will help you to discover what you know about these useful chemical reactions.

#### Questions

1. What is meant by a decomposition reaction? Use the following words to complete the sentences.

|              | compound      | down | elements | two |      |  |
|--------------|---------------|------|----------|-----|------|--|
| A reaction w | here a        | is k | oroken   |     | into |  |
| or more simp | ler compounds | or   | ·        |     |      |  |

2. Consider the following word equation for a thermal decomposition reaction:

lead carbonate → lead oxide + carbon dioxide

- (a) State if each substance is an element, compound or mixture. Circle the correct answer in the brackets.
  - i. Lead carbonate is [ an element / a compound / a mixture ].
  - ii. Lead oxide is [an element / a compound / a mixture].
  - iii. Carbon dioxide is [ an element / a compound / a mixture ].



- (b) Identify the reactants and products in the word equation above. Circle the correct answer in the brackets.
  - i. Lead carbonate is a [reactant / product].
  - ii. Lead oxide is a [reactant / product].
  - iii. Carbon dioxide is a [reactant / product].
- 3. Consider the following symbol equation for a thermal decomposition reaction:

$$MgCO_3 \rightarrow MgO + CO_2$$

(a) Draw a line to match the formula from the symbol equation to the name of each compound.

- (b) How do you know this is a thermal decomposition reaction?
- (c) Is this equation balanced? How do you know?

$$MgCO_3 \rightarrow MgO + CO_2$$

To work this out, you must count the number of each element on both sides of the equation.

The table has been completed for you:

| Element   | Number of each element |                 |  |  |
|-----------|------------------------|-----------------|--|--|
| Liemem    | Left-hand side         | Right-hand side |  |  |
| Magnesium | 1                      | 1               |  |  |
| Carbon    | 1                      | 1               |  |  |
| Oxygen    | 3                      | 3               |  |  |

# Education in Chemistry 11–14 years

equation same

Available from <a href="rsc.li/3XzrNsE">rsc.li/3XzrNsE</a>

S

Complete the sentences using the words provided.

balanced

element

As there are the \_\_\_\_\_ number of atoms of each \_\_\_\_\_ on

| DOITI SIDES OF THE                                                            | e                                                    | , the equ              | uation is _           |                 | _•             |
|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------|-----------------------|-----------------|----------------|
| •                                                                             | of ${ m MgCO_3}$ were had and 9.6 grams as produced? |                        |                       | •               | •              |
| i. Complet                                                                    | e the calculation                                    | n using the            | data abo              | ove.            |                |
|                                                                               |                                                      | $MgCO_3 \rightarrow I$ | MgO + CO              | 2               |                |
|                                                                               |                                                      | 18.5g → 9              | .6g + CO <sub>2</sub> |                 |                |
|                                                                               |                                                      | CO <sub>2</sub> =      | _                     |                 |                |
|                                                                               |                                                      | CO <sub>2</sub> =      |                       | g               |                |
| ii. Complet                                                                   | e the answer usi                                     | ng the wor             | ds provid             | ed.             |                |
|                                                                               | destroyed                                            | mass                   | product               | s reactar       | nts            |
| The conservatio                                                               | n of                                                 | state                  | s that ato            | ms cannot be    | created or     |
|                                                                               |                                                      |                        |                       |                 |                |
|                                                                               | Therefore, the                                       | mass of th             | e                     | must            | be the same as |
| the mass of the                                                               |                                                      |                        | e                     | must            | be the same as |
|                                                                               |                                                      |                        | e                     | must            | be the same as |
|                                                                               |                                                      | _•                     |                       |                 |                |
| <ul><li>4. (a) State the carbonate.</li><li>(b) Use the formula (b)</li></ul> |                                                      | for the the            | rmal deco             | omposition of o | copper         |

## STUDENT SHEET

# Education in Chemistry 11–14 years

Available from rsc.li/3XzrNsE



(c) Is your equation balanced? How do you know?

i. Use the following table to count the number of each element on either side of the equation.

| Element | Number of each element |                 |  |  |  |
|---------|------------------------|-----------------|--|--|--|
| Liemem  | Left-hand side         | Right-hand side |  |  |  |
| Copper  |                        |                 |  |  |  |
| Carbon  |                        |                 |  |  |  |
| Oxygen  |                        |                 |  |  |  |

ii. Complete the sentences using the words provided.

| balanced                | element | equation         | same          |  |
|-------------------------|---------|------------------|---------------|--|
| This symbol equation is | as th   | ne number of o   | atoms of each |  |
| is the                  | on h    | noth sides of th | ne            |  |

### **STUDENT SHEET**

## Education in Chemistry 11–14 years

Available from <a href="rsc.li/3XzrNsE">rsc.li/3XzrNsE</a>

S

#### Challenge

| <b>5.</b> Mercury(II) oxide (HgO) decomposes if it is exposed to light or heated above 500°C. |
|-----------------------------------------------------------------------------------------------|
| (a) What are the names of the products formed?                                                |
| and                                                                                           |
| (b) Write a word equation for this decomposition.                                             |
| Mercury(II) oxide → +                                                                         |
| (c) What are the formulas of the products formed?                                             |
| and                                                                                           |
| (d) Write a balanced symbol equation for this reaction.                                       |
| HgO → +                                                                                       |
| (e) How do you know your equation is balanced?                                                |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |