Class practical

In this experiment, rhubarb sticks, which contain oxalic acid, are used to reduce and decolourise potassium manganate(VII) solution. The experiment can be used to show how the rate of reaction is affected by surface area or concentration

Lesson organisation

This experiment is probably most suited to younger students or groups of students who do not need to be given the details of the reaction itself. It is difficult to relate the rate back to the equation. This is because the results can be complex, due to the competing reactions taking place. (See the additional teaching notes.) On a simple level the experiment works well, and makes an unusual alternative to hydrochloric acid and marble chips.

All the practical work can easily be completed in a one-hour session, and graphs could be plotted of the results. Alternatively, the practical work and follow-up can be split over two separate sessions. You could also discuss with students in what ways this experiment is not a fair test.

Warn students not to consume anything in the lab – they may be tempted to taste the rhubarb (although it doesn’t taste very good unsweetened).

If you use rhubarb from home or someone’s garden, ensure that the leaves are removed before it is given to students. Rhubarb leaves contain far more oxalic acid than the stalk, and are HARMFUL.

Apparatus Chemicals

Investigating the effect of surface area:

Eye protection

Each working group will require:

Beakers (100 cm3), 2 or more

Measuring cylinder (50 cm3)


White tile or piece of paper

Students will need access to:

Knives, 4 to 6 per class (ordinary table knives are probably most appropriate.)

Investigating the effect of concentration:

Additional requirements
Students will need access to:

Filter funnels and filter paper or tea strainers

Each working group will require:

Beaker (250 cm3)

Bunsen burner

Heat resistant mat



Rhubarb stalks (frozen rhubarb also works if the pieces are long enough) (Note 1)

For the potassium manganate(VII) solution (Note 2):


Dilute sulfuric acid, 1 M, (IRRITANT), volume required depends on the number of student groups (Note 2)

Refer to Health & Safety and Technical notes section below for additional information.

Health & Safety and Technical notes

Read our standard health & safety guidance

Wear eye protection.


Dilute sulfuric acid, H2SO4(aq), (IRRITANT) - see CLEAPSS Hazcard and CLEAPSS Recipe Book.

Oxalic acid, in the rhubarb (HARMFUL) - see CLEAPSS Hazcard. 

1 As the oxalic acid content of the rhubarb will vary, it is well worth checking that the potassium manganate(VII) solution will give appropriate results with the rhubarb you are using.

2 To make the potassium manganate(VII) solution: put 4 or 5 crystals (or sufficient powder to just cover the tip of a spatula) into a 2 dm3 beaker (or large jug) with about 500 cm3 of 1 M sulfuric acid (IRRITANT).  Stir until the crystals dissolve. Add a further 500 cm3 of 1 M sulfuric acid. Stir to mix. The solution should be labelled as IRRITANT. The solution should be a light purple colour - if necessary, dilute further with a little more water. The exact concentration is not critical.        

Each group of students will need approximately 300 cm3 of the solution in total (for both experiments). Adjust the volumes given above accordingly.


Investigating the effect of surface area
a Cut three 5 cm lengths of rhubarb. Leave one piece as it is, cut one piece in half lengthways, and cut the third piece into 4 evenly-sized pieces.

b Measure 30 cm3 of acidified potassium manganate(VII) solution into a beaker. Pour the same quantity of water into another beaker.

c Place the beakers on a white tile. Put the whole 5 cm long piece of rhubarb into the potassium manganate(VII) and start the timer. Stir the solution containing the rhubarb until the purple colour disappears. If you are not sure, briefly remove the rhubarb and compare the colour of the solution to the beaker of water. When they look the same, stop the timer.

d Rinse out and dry the reaction beaker.

e Repeat the experiment using the piece of rhubarb cut into 2 (use both halves). Rinse and dry the beaker.

f  Repeat the experiment again, this time using the piece of rhubarb cut into 4.

Investigating the effect of concentration
a Cut the stick of rhubarb (width ways this time) into thin slices (about 0.5 cm) and put them into the 250 cm3 beaker. Cover the rhubarb with distilled water and heat gently.

b Bring the rhubarb to the boil and continue heating gently until the rhubarb falls to pieces. This will take about 5 minutes. Turn off the Bunsen and leave the rhubarb mixture to cool.

c When cool enough to handle, filter or strain the mixture and keep the filtrate (liquid).

d Measure 30 cm3 of acidified potassium manganate(VII) solution into one of the 100 cm3beakers and the same amount of water into the other.

e Add one drop of the rhubarb filtrate to the potassium manganate(VII) solution and start the timer. Stop the timer when the colour disappears and is the same as the plain water.

f Repeat the experiment for 2, 3, 4, 5, and 6 drops of the rhubarb extract.

Teaching notes

Rhubarb contains oxalic acid (ethanedioic acid) which has the formula C2H2O4:

Oxalic acid reacts with potassium manganate(VII) in acidic solutions and is oxidised to carbon dioxide and water:

2MnO4 + 5C2H2O4 + 6H3O+ → 2Mn2+ + 10CO2 + 14H2O

The potassium manganate(VII) decolourises which provides a convenient and easy-to-measure end-point to the reaction. Aqueous solutions of Mn2+ are actually pale pink, but at these concentrations will appear almost colourless.

Students should be able to observe that as the surface area of the rhubarb increases, so does the rate of the reaction. Likewise for increasing concentration of rhubarb juice. The concentration has been varied by putting in more drops of the rhubarb extract, so the total volume has been increased. You may like to discuss the implications of this with the students.

It is worth noting that the reaction is autocatalysed (catalysed by a product of the reaction) by the Mn2+ ions. This could lead to some confusing patterns for students if the results are analysed too closely, and an attempt is made to link the results to the equation.

Health & Safety checked, 2016


This Practical Chemistry resource was developed by the Nuffield Foundation and the Royal Society of Chemistry.

© Nuffield Foundation and the Royal Society of Chemistry

Page last updated October 2015