Class practical

Some metals are more reactive than others. In this experiment, a strip of metal is added to a solution of a compound of another metal. A more reactive metal displaces (pushes out) a less reactive metal from its compound. In carrying out the experiment, students investigate competition reactions of metals and arrive at a reactivity series of the four metals they use.

Lesson organisation

There are many ways of carrying out this series of reactions. The one described here uses a spotting tile but the same procedure could be adapted for use with test -tubes. The advantages of the spotting tile method include:

very small quantities of chemicals are used.

the whole set of experiments is displayed together, making comparison easier.

clearing-up afterwards is simple and avoids metal deposits being left in sinks.

Careful thought needs to be given to distribution of the chemicals to the class. Solutions could be distributed in test-tubes, or in small bottles fitted with droppers for sharing between several pairs of students. Metals could be issued in sets. The teacher should keep control of the magnesium ribbon, dispensing short lengths when required.

There should be no flames alight so that students are not tempted to burn pieces of magnesium and the teacher should be alert to the possibility of pieces of magnesium being removed from the laboratory.

The experiment should take about 30 minutes.

Apparatus Chemicals

Eye protection

Each student or pair of students will require:

Spotting tile, with at least 16 depressions (or two smaller tiles)

Dropping (teat) pipette

Beaker (100 cm3)

Felt tip pen or other means of labelling

Access to about 5 cm3 each of the following 0.1 M metal salt solutions (Note 1):

Copper(II) sulfate (or nitrate(V))


Magnesium sulfate (or nitrate(V))

Zinc sulfate (or nitrate(V))

Five samples, approximately 1 cm lengths or squares, of each the following metals (Note 2):

Copper foil


Magnesium ribbon

Zinc foil

Refer to Health & Safety and Technical notes section below for additional information.

Health & Safety and Technical notes

Read our standard health & safety guidance

Copper(II) sulfate solution, CuSO4(aq) - see CLEAPSS Hazcard.  

Lead nitrate(V) solution, Pb(NO3)2(aq), (TOXIC, DANGEROUS FOR THE ENVIRONMENT) - see CLEAPSS Hazcard.  

Magnesium sulfate solution, MgSO4(aq) - see CLEAPSS Hazcard.  

Zinc sulfate solution, ZnSO4(aq) - see CLEAPSS Hazcard. 

Copper foil, Cu(s), magnesium ribbon, Mg(s), Zinc foil, Zn(s) - see CLEAPSS Hazcards.  


Magnesium ribbon, Mg(s) - see CLEAPSS Hazcard. Do NOT leave in a place where pupils would have potentially unsupervised access.

1 Solutions may be dispensed in 5 cm3 beakers to each pair of students or in small bottles fitted with droppers to groups of students.

2 Metals should be approximately 1 cm lengths or squares of ribbon or foil cleaned with emery paper and as similar in size as possible.


a Using a dropping pipette, put a little of the zinc sulfate (or nitrate) solution in four of the depressions in the spotting tile, using the following illustration as a guide. Label this row with the name of the solution. Rinse the pipette well with water afterwards.

b Do this for each metal ion solution in turn , rinsing the pipette when you change solution.

c Put a piece of each metal in each of the solutions, using the illustration as a guide.

d Over the next few minutes observe which mixtures have reacted and which have not.

Teaching notes

Remind the class that they are looking for cases where one metal displaces another. Some of the solutions are slightly acidic so that bubbles of hydrogen are sometimes seen. Explain that this does not count as displacement of one metal by another.

It might be best to get the class to tell you what they think the order of reactivity is while they still have the evidence in front of them, so that apparent discrepancies can be resolved.

Health & Safety checked, 2016


This Practical Chemistry resource was developed by the Nuffield Foundation and the Royal Society of Chemistry.

© Nuffield Foundation and the Royal Society of Chemistry

Page last updated October 2015