Buffer solutions: teacher notes

Education in Chemistry

November 2021
https://rsc.li/3GbHZIb

Teacher notes

The problems that follow are based on the information in the fact sheet and allow learners to apply their mathematical skills in these different contexts.

Part 1 involves the use of logarithms to convert between $\left[\mathrm{H}^{+}\right]$and pH and between K_{a} and $\mathrm{p} K_{\mathrm{a}}$. If learners are not taking higher level courses in mathematics, they may not have met this type of calculation elsewhere, so consolidation of this skill is a good idea before the more complicated buffer solution calculations are tackled.

Part 2 gives an opportunity to practise using the Henderson-Hasselbalch equation to process buffer solution data with the aim of helping learners become more familiar with the equation and its inverse.

Part 3 has two more extended questions combining buffer solution calculations with stoichiometry in the context of making buffers by partial neutralisation of the weak acid.

Parts 1 and 2 should be accessible to learners who have studied pH , weak acids and buffer solutions, typically in the second year of a post-16 chemistry course. Part 3 is aimed at more able students at the same stage of the course who need practice at more unstructured synoptic questions.

Answers

These questions are based on the information about the lateral flow test, pH balanced shampoo and ocean acidification given on the fact sheet and will allow you to practise the mathematical skills required for calculations involving pH and buffer solutions.

Part 1: pH and $\mathrm{pK} \mathrm{K}_{\mathrm{a}}$ calculations

1. $\left[\mathrm{H}^{+}\right]=10^{-7.40}=3.98 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$
2. $\mathrm{pH}=-\log \left(1.60 \times 10^{-7}\right)=6.80$
3. $\mathrm{K}_{\mathrm{a}}=10^{-10.32}=4.79 \times 10^{-11} \mathrm{~mol} \mathrm{dm}^{-3}$
4. $\mathrm{pK}_{\mathrm{a}}=-\log \left(1.48 \times 10^{-4}\right)=3.83$
3.13 , the K_{a} for citric acid, is less than 3.83 , therefore citric acid is the stronger acid.
5. At pH 8.2, $\left[\mathrm{H}^{+}\right]=10^{-8.2}=6.3 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$

At pH 8.1, $\left[\mathrm{H}^{+}\right]=10^{-8.1}=7.9 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$
Therefore the $\%$ increase $=(100 \times 7.9 / 6.3)-100 \%=\mathbf{2 5 \%}$

Part 2: using the Henderson-Hasselbalch equation

6. Substituting the pK_{a} into the Henderson-Hasselbalch equation for the target pH of 7.40 gives:
$7.40=7.21+\log _{10} \frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]}$, which can be rearranged to give: $\frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]}=10^{7.40-7.21}$, resulting in a ratio of $10^{0.19}=\mathbf{1 . 5 4}$.

Note that you can use any actual concentrations, as long as the acid/salt concentration ratio is correct. However, if the concentrations of acid and salt are too low, then the buffer will be easily overwhelmed by addition of significant amounts of acid or alkali.
7. Substituting into the Henderson-Hasselbalch equation using the pK_{a} for the first dissociation gives:
$\mathrm{pH}=3.13+\log _{10} \frac{0.0090}{0.0010}$, which gives: $\mathrm{pH}=3.13+0.95=4.08$
8. Substituting into the Henderson-Hasselbalch equation gives: $8.10=10.32+\log _{10} \frac{\left[\mathrm{CO}_{3}{ }^{2-}\right]}{0.0018}$

Rearranging this gives: $\quad=10^{8.10-10.32}$, so $\left[\mathrm{CO}_{3}{ }^{2-}\right]=0.0018 \times 10^{-2.22}=\mathbf{1 . 0 8} \mathbf{x 1 0} \mathbf{1 0}^{-5} \mathbf{~ m o l ~ d m}^{\mathbf{- 3}}$

Part 3: making buffer solutions by partial neutralisation

9.

a. Equation $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}{ }^{-} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Amount of citric acid $=0.100 \mathrm{dm}^{3} \times 0.0100 \mathrm{moldm}^{-3}=0.00100 \mathrm{~mol}$
Amount of sodium hydroxide added $=0.020 \mathrm{dm}^{3} \times 0.040 \mathrm{moldm}^{-3}=0.00080 \mathrm{~mol}$
Equation ratio citric acid:sodium hydroxide is $1: 1$, so the amount of citric acid that reacts with the sodium hydroxide $=0.00080$ mol, which would give 0.00080 mol of sodium monocitrate salt

Amount of citric acid left over $=0.00100-0.00080=0.00020 \mathrm{~mol}$ Salt/acid concentration ratio $=0.00080 / 0.00020=4.0$

Note that although it's the salt/acid concentration ratio that is needed, it's OK to calculate the salt/acid mole ratio, as this will be the same value because both salt and acid are dissolved in the same volume of water.
b. Substituting into the Henderson-Hasselbalch equation gives:
$\mathrm{pH}=3.13+\log _{10} 4.0$, therefore: $\mathrm{pH}=3.13+0.60=3.73$
10.
a. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
b. Amount of sodium dihydrogen phosphate $=0.500 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}=0.0500 \mathrm{~mol}$

If x mol of sodium hydroxide is added and the equation ratio in part a. is 1:1
then the amount of hydrogen phosphate salt formed $=x$ mol
and the amount of dihydrogen phosphate remaining $=0.0500-\mathrm{x} \mathrm{mol}$
The required salt/acid ratio of $1.5=x /(0.0500-x)$, which rearranged gives: $0.075=2.5 x$, so $x=0.030 \mathrm{~mol}$ sodium hydroxide

Therefore the volume of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide required $=0.030 / 0.200=\mathbf{0 . 1 5}$ dm^{3}

