It is often necessary to obtain a pure chemical from an impure sample. This experiment involves the purification of a chemical called alum.

Class practical

It is often necessary to obtain pure solid chemicals from impure samples. This experiment involves the purification of alum. If students have already carried out this type of experiment, eg salt from a mixture of salt and sand, it can be presented as a simple type of investigation. In addition, this experiment allows large crystals of alum to be formed; students are always fascinated by the process of crystal growing.

Lesson organisation

This experiment can be carried out by groups of two or three and will take about one hour to complete.

Apparatus Chemicals

Eye protection

Beaker (100 cm3)

Glass stirring rod

Filter funnel

Filter papers, 2

Evaporating dish

Clamp and stand

Bunsen burner

Heat resistant mat

Tripod

Gauze

Forceps (optional)

Watch glass (optional)

Impure alum (hydrated aluminium potassium sulfate) about 5 g per group of students (Note 1)

Refer to Health & Safety and Technical notes section below for additional information.

Health & Safety and Technical notes

Read our standard health & safety guidance

Wear eye protection throughout. Take care with hot apparatus and solutions. 

Alum, KAl(SO4)2.12H2O - see CLEAPSS Hazcard.

1 To prepare the impure solid, add a small amount of dry soil to a sample of alum. Ensure the soil is taken from an area unlikely to be contaminated (away from dogs or cats). Depending on the type of soil, particles may pass through the filter paper.

Procedure

a Use about 3-4 g of the impure solid – enough to cover the bottom of the beaker.

b Add water until the beaker is about one-quarter full of liquid (25 cm3).

c Place the beaker on a tripod and gauze, over a Bunsen burner, and heat the mixture stirring it frequently with a glass rod.

d When the mixture boils, stop heating and allow the mixture to cool a little.

e Filter the hot solution into the evaporating dish (see diagram).

f Leave the solution to cool. If necessary cover the dish with a filter paper or watch glass and leave overnight.

g Remove the crystals by decanting or by using a pair of a forceps.

h Dry these crystals by dabbing them on pieces of dry filter paper.

Teaching notes

It is important that students use the quantities given above. Using too much solid will prevent all the alum from fully dissolving and a powdered, rather than a crystalline product will form. Using too much water means that on cooling, no crystals will appear, since the solution is still unsaturated.

Students should understand that this method works because alum dissolves in water whilst most of the foreign matter is insoluble. They should also realise that the alum eventually crystallises out since it is far less soluble in cold water than in hot.

This experiment can be extended by allowing students to “grow” crystals from the saturated solution left behind in the evaporating dish. Traditionally this is carried out by suspending crystals from a length of cotton, but equally good results are obtained by choosing a well-formed crystal and placing it in some of the filtered saturated solution. Dust-free conditions are essential.

Health & Safety checked, 2016

Credits

This Practical Chemistry resource was developed by the Nuffield Foundation and the Royal Society of Chemistry.

© Nuffield Foundation and the Royal Society of Chemistry

Page last updated October 2015