gridlocks - can you unlock the grid?

Mass concentration of solutions

Before you answer the gridlocks below fill in the table of concentrations in $\mathrm{g} / \mathrm{dm}^{3}$ using:

$$
\text { mass concentration }=\frac{\text { mass }}{\text { volume }\left(\mathrm{indm}^{3}\right)} \quad \text { and } \quad \text { mass }=\text { moles } \times \text { molar mass }\left(\mathrm{M}_{\mathrm{r}}\right)
$$

Substance	$\mathbf{M}_{\mathbf{r}}$	Concentration in $\mathbf{m o l} / \mathbf{d m}^{3}$	Concentration in $\mathbf{g / d m}$ $\mathbf{3}$
NaOH	40	0.1	
HCl	36.5		73
$\mathrm{M}_{2} \mathrm{CO}_{3}$			53

(M is a metal, you should be able to work out which one)

Gridlock 1

Each row, column and 2×2 box contains concentrations of NaOH of $1,0.5,0.1$ and $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$. Use your problem solving skills and the skills you used to put answers in the table above to fill in the blank boxes.

concentration in $\mathrm{mol} / \mathrm{dm}^{3}$			concentration in $\mathrm{g} / \mathrm{dm}^{3}$	
0.5				
		16		
		1		

gridlocks - can you unlock the grid?

Gridlock 2

Each row, column and 2×2 box contains information about solutions of NaOH with concentrations of $1,0.5$, 0.1 and $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$.

concentration in mol/dm ${ }^{3}$		concentration in $\mathrm{g} / \mathrm{dm}^{3}$	
	1		
			16
0.0125			40

Gridlock 3

Each row, column and 2×2 box contains information about solutions of NaOH with concentrations of $1,0.5$, 0.1 and $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$.

concentration in $\mathrm{mol} / \mathrm{dm}^{3}$			concentration in $\mathrm{g} / \mathrm{dm}^{3}$
0.5			40

gridlocks - can you unlock the grid?

Mass concentration of solutions - answers

Before you answer the puzzles below fill in the table of concentrations in $\mathrm{g} / \mathrm{dm}^{3} \mathrm{using}$:

$$
\text { mass concentration }=\frac{\text { mass }}{\text { volume }\left(\mathrm{indm}^{3}\right)} \quad \text { and } \quad \text { mass }=\text { moles } \times \text { molar mass }\left(\mathrm{M}_{\mathrm{r}}\right)
$$

Substance	$\mathbf{M}_{\mathbf{r}}$	Concentration in $\mathbf{m o l} / \mathbf{d m}^{\mathbf{3}}$	Concentration in $\mathbf{g} / \mathbf{d m}^{\mathbf{3}}$
NaOH	40	0.1	$\mathbf{4}$
HCl	36.5	$\mathbf{2}$	73
$\mathrm{M}_{2} \mathrm{CO}_{3}$	$\mathbf{1 0 6}$	0.5	53

(M is sodium)

Puzzle 1 - answers

Each row, column and 2×2 box contains concentrations of NaOH of $1,0.5,0.1$ and $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$. Use your problem solving skills and the skills you used to put answers in the table above to fill in the blank boxes.

concentration in $\mathrm{mol} / \mathrm{dm}^{3}$		concentration in $\mathrm{g} / \mathrm{dm}^{3}$	
0.5	0.4	4	40
0.1	1		
16	20	16	20
		1	0.1
40	4		

grídlOCKS - can you unlock the grid?

Puzzle 2 - answers
Contains information about solutions of NaOH with concentrations of $1,0.5,0.1$ and $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$.

concentration in mol/dm ${ }^{3}$		concentration in $\mathrm{g} / \mathrm{dm}^{3}$	
0.1	1	20	16
0.4	0.5	4	40
0.025	0.0025	0.4	0.5
0.0125	0.01	1	0.1
moles in $25 \mathrm{~cm}^{3}$		concentration in $\mathrm{mol} / \mathrm{dm}^{3}$	

Puzzle 3 - answers

Contains information about solutions of NaOH with concentrations of $1,0.5,0.1$ and $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$.

concentration in mol/dm ${ }^{3}$		concentration in $\mathrm{g} / \mathrm{dm}^{3}$	
0.5	0.1	16	40
0.4	1	20	4
0.025	0.0125	0.1	0.4
0.0025	0.01	1	0.5
moles in $25 \mathrm{~cm}^{3}$		mass in $25 \mathrm{~cm}^{3}$ in g	

