Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student’s answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

In general error carried forward can be applied, we have tried to indicate where this may happen in the mark scheme.

For answers with missing or incorrect units, penalise one mark for the first occurrence in each question and write UNIT next to it. Do not penalise for subsequent occurrences in the same question.

Organic structures are shown in their skeletal form, but also accept displayed formulae as long as the representation is unambiguous.

Comments in blue have been added to some questions, these are not required for the marks, but may be of interest in subsequent discussion on the questions.
1. This question is about the chemistry of touch-screens

(a) \[2\text{In(OH)}_3 \rightarrow \text{In}_2\text{O}_3 + 3\text{H}_2\text{O} \]

State symbols not required

(b) (i) Fraction of indium in \(\text{In}_2\text{O}_3 \)

\[
= \frac{(2 \times 114.82)}{(2 \times 114.82) + (3 \times 16.00)} = 0.8271
\]

Mass of In in touchscreen = \(0.8271 \times 0.90 \times 27 \text{ mg} = 20.1 \text{ mg} \)

(ii) Volume of ITO touchscreen = \(0.027 \text{ g} / 7.15 \text{ g cm}^{-3} = 0.00378 \text{ cm}^3 \)

Area of ITO touchscreen = \(20.1 \text{ mg} / 700 \text{ mg m}^{-2} \)

\[
= 0.0287 \text{ m}^2 \text{ or } 287 \text{ cm}^2
\]

Thickness of ITO touchscreen = \(0.00378 \text{ cm}^3 / 287 \text{ cm}^2 \)

\[
= 0.0000132 \text{ cm} \text{ or } 0.132 \mu\text{m} \text{ or } 1.32 \times 10^{-7} \text{ m}
\]

Correct answer scores full marks. Award 1 mark if area calculated correctly. Allow error carried forward from (b)(i).

(c) Indium ions in cube = \((8 \times \frac{1}{8}) + (6 \times \frac{1}{2}) = 4 \)

(d) Oxide ions in cube = \(\frac{3}{2} \times 4 = 6 \)

They occupy \(\frac{3}{4} \) of the tetrahedral holes.

(e) Molar mass of \(\text{In}_2\text{O}_3 \) = 277.64 g mol\(^{-1}\)

The mass decrease corresponds to \(0.115 \times 277.64 \text{ g mol}^{-1} \)

\[
= 31.93 \text{ g mol}^{-1}
\]

This corresponds to the loss of two oxygen atoms per formula unit, giving \(\text{In}_2\text{O} \).

Correct answer scores 2 marks. Award 1 mark if mass decrease is calculated correctly.

(f) \(\text{InN} \)

The equation is \(\text{In}_2\text{O}_3 + 2\text{NH}_3 \rightarrow 2\text{InN} + 3\text{H}_2\text{O} \) but this is not needed to be given full credit.

Question Total 9
2. This question is about detecting molecules in space

(a) (i)
\[\text{Butanenitrile} \]

(ii)
\[\text{Butanenitrile} \]

Allow 1-Butanenitrile. \(\frac{1}{2} \) mark for structure, \(\frac{1}{2} \) mark for name.

(b)
\[\text{All five structures correct scores 3 marks. Four correct structures scores 2 marks (it is thought that most students will draw only one of the two enantiomers). Three correct structures scores 1 mark. Two correct structures scores } \frac{1}{2} \text{ mark. One correct structure scores 0 marks. Incorrect or duplicated structures should be penalised at minus 1 mark each, down to a minimum of 0 marks.} \]

(c)
\[\text{Energy of transition from } (J+1)^{\text{th}} \text{ level to } J^{\text{th}} \text{ level (an emission)} \]
\[= h \times B \times (J + 1) (J + 2) - h \times B \times J (J + 1) \]
\[= h \times B \times [(J^2 + 3J + 2) - (J^2 + J)] \]
\[= h \times B \times 2(J + 1) = h \times f \]
\[B = f / 2(J + 1) \]
\[B = 13186.853 \text{ MHz} / 2(38 + 1) \]
\[B = 169.0622179 \text{ MHz} \]

Correct answer scores full marks. General formula does not have to be derived, but is worth a credit of 1 mark and very useful for remainder of question.
(ii) \[h \times f = h \times B \times 2(J + 1) \quad \text{(from part (d)(i))} \]
\[f = B \times 2(J + 1) \]
\[f = 169.0622179 \text{ MHz} \times 2(37 + 1) \]
\[f = 12848.72856 \text{ MHz} \]

Correct answer scores full marks. General formula does not have to be derived, but is worth a credit of 1 mark. Allow error carried forward from (d)(i). Answer should be answer to (d)(i) multiplied by 76.

(e) Mass of one atom of \(^{12}\text{C} \) = \(12.00 \text{ g mol}^{-1} / 6.02 \times 10^{23} \text{ mol}^{-1} \)
\[= 1.993 \times 10^{-23} \text{ g} = 1.993 \times 10^{-26} \text{ kg} \]
Mass of one atom of \(^{16}\text{O} \) = \(16.00 \text{ g mol}^{-1} / 6.02 \times 10^{23} \text{ mol}^{-1} \)
\[= 2.658 \times 10^{-23} \text{ g} = 2.658 \times 10^{-26} \text{ kg} \]

(f) \[\mu = 1.993 \times 10^{-26} \text{ kg} \times 2.658 \times 10^{-26} \text{ kg} / (1.993 \times 10^{-26} + 2.658 \times 10^{-26}) \text{ kg} \]
\[= 1.139 \times 10^{-26} \text{ kg} \]

Allow error carried forward from part (e)

(g) (i) \[f = B \times 2(J + 1) \]
\[f = B \times 2(0 + 1) \]
\[f = 2B \]
\[B = 57,636 \text{ MHz} \]
\[\tau^2 = \frac{h}{8\pi^2 \mu B} \]
\[\tau^2 = \frac{6.626 \times 10^{-34} \text{ kg m s}^{-2} \text{ s}}{8 \times \pi^2 \times 1.139 \times 10^{-26} \text{ kg} \times 5.7635 \times 10^{10} \text{ s}^{-1}} \]
\[\tau^2 = 1.2783 \times 10^{-20} \text{ m}^2 \]
\[\tau = 1.13 \times 10^{-10} \text{ m} \]

Correct answer scores 3 marks. Statement \(f = 2B \) scores 1 mark, correct calculation of \(B \) is worth the second mark. The third mark is for the correct answer. Penalise 1 mark for incorrect or missing units, or if out by power(s) of 10 due to mix up with cm/m etc.
(ii) \[f = B \times 2(J + 1) \]
\[
806651.719 \text{ MHz} = 57635 \text{ MHz} \times 2(J + 1)
\]
\[2(J + 1) = 14\]
\[(J + 1) = 7\]
\[J = 6\]

Transition is from Level \(J = 7 \) to \(J = 6 \)

Correct answer scores 2 marks. If they have calculated the correct value of \(J \) but have labelled the transition the wrong way round i.e. \(J = 6 \) to \(J = 7 \) then award only 1 mark. If \(J \) has not been calculated numerically correctly then 0 marks. Error carried forward is not credited here.

Question Total 17
3. This question is about the performance-enhancing drug Ritalin®

(a) Compound A

(b) Anion B

(c) Compound C

(d) Compound D

(e) Compound E

(f) Compound F

Each correct structure scores 1 mark. If the R group in Compound F is drawn in as CH₃ then this is also acceptable.
(d) The nitrogen atom must be the only atom circled.

(e) (i) Additional molar mass on forming HCl salt = \((1.008 + 35.45) \text{ g mol}^{-1}\)
\[= 36.458 \text{ g mol}^{-1}\]
Number of moles of Ritalin must remain constant, therefore the following equation can be set up where \(M\) is the molar mass of Ritalin.

\[
\frac{10.00}{M + 36.458} = \frac{8.647}{M}
\]

\[10.00M = 8.647(M + 36.458)\]
\[10.00M - 8.647M = 315.252\]
\[1.353M = 315.252\]

\[M = 233.00 \text{ g mol}^{-1}\]

Working must be shown to get credit. This is because it is possible to work backwards from part (e)(ii) to get the mass. Award 1 mark if the concept of equating moles is shown, award the second mark if the equation above is written explicitly. The final mark is for the correct answer.

(ii) Molar mass of molecule without R group = 218 g mol\(^{-1}\)
Molar mass of R group = \((233 - 218) \text{ g mol}^{-1}\) = 15 g mol\(^{-1}\)
Identity of R group = CH\(_3\) or Methyl or Me

The observant student might notice that the chemical name for Ritalin (Methylphenidate Hydrochloride) on the box in the picture suggests the identity of R, hence it is possible to score credit here even if part (e)(i) is incorrect.
Award ½ mark for each. In each case must be both the correct functional group and have the arrow(s) pointing to the correct bond(s) to obtain the ½ mark. The words in brackets are not needed. In the case of the amide in part (vi) arrows must be drawn to both bonds to obtain the ½ mark.

Award 3 marks.

<table>
<thead>
<tr>
<th>Pair of Stereoisomers</th>
<th>Enantiomers</th>
<th>Not Enantiomers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>1 and 3</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>1 and 4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2 and 3</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>2 and 4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3 and 4</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

All correct 2 marks. For each mistake minus 1 mark, down to a minimum of zero. If both boxes have been ticked for any pair then 0 marks for this part.
(h) Anion G^-

\[
\begin{align*}
\text{Worth 2 marks} & & \text{Worth 1 mark} \\
\end{align*}
\]

Full marks if both are drawn.

(i)

<table>
<thead>
<tr>
<th>Pair of Stereoisomers</th>
<th>Intervconverted via Anion G^-</th>
<th>Not Intervconverted via Anion G^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>1 and 3</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>1 and 4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2 and 3</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2 and 4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3 and 4</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

All correct 2 marks. For each mistake minus 1 mark, down to a minimum of 0. If both boxes have been ticked for any pair then 0 marks for this part.

If the anion below was drawn in part (h) then error carried forward can be applied here, in which case the correct answers are (1 and 2) and (3 and 4).

Question Total 20
4. This question is about hangovers

(a) it is oxidised it is reduced it is hydrolysed it is isomerised it remains chemically unchanged 1

No marks if more than one answer circled.

(b) Molar mass of ethanol = \((2 \times 12.01 + 6 \times 1.008 + 16.00) \text{ g mol}^{-1}\)
\[= 46.068 \text{ g mol}^{-1}\]
Concentration = \(80 \text{ mg} / 100 \text{ cm}^3\)
\[= 800 \text{ mg dm}^{-3} = 0.8 \text{ g dm}^{-3}\]
\[= 0.8 \text{ g dm}^{-3} / 46.068 \text{ g mol}^{-1}\]
\[= 0.017 \text{ mol dm}^{-3} \text{ or } 0.017 \text{ M or } 17 \text{ mM}\] 1

(c) (i) If \([\text{C}_2\text{H}_5\text{OH}] >> K_M\), then \(K_M + [\text{C}_2\text{H}_5\text{OH}] \approx [\text{C}_2\text{H}_5\text{OH}]\)
\[\text{Rate} = \frac{k_{\text{cat}}[AD][\text{C}_2\text{H}_5\text{OH}]}{K_M + [\text{C}_2\text{H}_5\text{OH}]}\]
\[\text{Rate} = \frac{k_{\text{cat}}[AD][\text{C}_2\text{H}_5\text{OH}]}{[\text{C}_2\text{H}_5\text{OH}]}\]
\[\text{Rate} = k_{\text{cat}}[AD]\] 1

(ii) If \(K_M >> [\text{C}_2\text{H}_5\text{OH}]\), then \(K_M + [\text{C}_2\text{H}_5\text{OH}] \approx K_M\)
\[\text{Rate} = \frac{k_{\text{cat}}[AD][\text{C}_2\text{H}_5\text{OH}]}{K_M + [\text{C}_2\text{H}_5\text{OH}]}\]
\[\text{Rate} = \frac{k_{\text{cat}}[AD][\text{C}_2\text{H}_5\text{OH}]}{K_M}\] 1

(d) Zero or 0 or Zeroth Order

At the UK drink drive limit \([\text{C}_2\text{H}_5\text{OH}]\) is much greater than \(K_M\), meaning the case in (c)(i) applies. This is why it is possible to roughly calculate how long it will take someone to ‘sober up’ as the rate of loss of alcohol is approximately constant. 1

(e) (i) This is obtained from the gradient of the graph in the period up to 18 h where there is a constant gradient.
Gradient = 17.0 (mg / 100 cm³) h⁻¹
Allow values between 15.5-18.5 (mg / 100 cm³) h⁻¹ 1
(ii) From part (b) 80 mg / 100 cm3 = 0.0174 mol dm$^{-3}$
Therefore 1 mg / 100 cm3 = 2.175 x 10$^{-4}$ mol dm$^{-3}$
17 (mg / 100 cm3) h$^{-1}$ = 3.698 x 10$^{-3}$ mol dm$^{-3}$ h$^{-1}$
= 1.03 x 10$^{-6}$ mol dm$^{-3}$ s$^{-1}$
Allow error carried forward from (e)(i). Answer should be 6.04 x 10$^{-8}$ multiplied by the answer for part (e)(i). Also allow error carried forward from (b) if the same wrong conversion factor has been used.

(f) From part (c)(i) \(\text{rate} \approx k_{\text{cat}}[AD] \)
\[
[AD] = \frac{\text{rate}}{k_{\text{cat}}} \\
[AD] = 1.03 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1} / 1.33 \text{ s}^{-1} \\
[AD] = 7.74 \times 10^{-7} \text{ mol dm}^{-3}
\]
Allow error carried forward from (e)(ii). Answer should be the answer for part (e)(ii) divided by 1.33.

(g) \begin{tabular}{c c c c}
& it increases & it is constant & it decreases \\
& & & it is impossible to determine from the graph \\
\end{tabular}

(h) (i) \(\text{H}_3\text{C} \!=\! \text{OH} \quad \text{Methanol} \)
Structure or name acceptable for 1 mark

(ii) \(\text{Ethane-1,2-diol} \) or \(\text{Ethylene glycol} \)
Structure or name acceptable for 1 mark
The maximum rate of metabolism occurs at high alcohol concentration when the enzyme is saturated with substrate. In this case and the alcohol with the higher k_{cat} value is metabolised more quickly.

When $K_M = [C_2H_5OH]$ then

$$rate = \frac{k_{cat}[AD]}{2}$$

and the reaction proceeds at half the maximum rate. Therefore alcohols with a high K_M value must be present at higher concentration for the reaction to proceed at half of its maximum rate.

Interestingly, as ethanol is a ‘better’ substrate for alcohol dehydrogenase than either methanol ($K_M = 3.0 \times 10^{-2}$ mol dm$^{-3}$) or ethylene glycol ($K_M = 3.2 \times 10^{-2}$ mol dm$^{-3}$), it is often used to treat cases of poisoning with these substances as it is metabolised preferentially by the enzyme.
5. This question is about making “green” jet fuel

(a) \[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{CO} + \text{H}_2 + \text{O}_2 \]
 \text{State symbols not required} \hspace{1cm} 1

(b) (i) General formula for an alkane \(C_nH_{2n+2} \)
 \[n \text{ CO} + (2n+1) \text{ H}_2 \rightarrow C_nH_{2n+2} + n \text{ H}_2\text{O} \]
 \text{State symbols not required} \hspace{1cm} 1

 (ii) \(n = 12, 2n+1 = 25 \), therefore ratio of \(\text{CO}:\text{H}_2 = 12:25 \) \hspace{1cm} 1

(c) (i) \(\text{CeO}_{2.5} + \delta \text{ CO}_2 \rightarrow \text{CeO}_2 + \delta \text{ CO} \)
 \text{State symbols not required} \hspace{1cm} 1

 (ii) \(\text{CeO}_{2.5} + \delta \text{ H}_2\text{O} \rightarrow \text{CeO}_2 + \delta \text{ H}_2 \)
 \text{State symbols not required} \hspace{1cm} 1

(d) (i) Number of moles of O atoms evolved = \(2 \times 367 \text{ cm}^3/24,000 \text{ cm}^3 \text{ mol}^{-1} \)
 \[= 0.0306 \text{ mol} \]
 Number of moles of \(\text{CeO}_2 = 127 \text{ g} / 172.12 \text{ g mol}^{-1} \)
 \[= 0.738 \text{ mol of CeO}_2 \]
 \[\delta = 0.0306/0.738 = 0.0414 \]
 \text{Award 1 mark for if the factor of 2 has been forgotten, i.e. 0.0207 scores 1 mark.} \hspace{1cm} 1

 (ii) \(2 \times 367 \text{ cm}^3 = 734 \text{ cm}^3 \) \hspace{1cm} 1

(e) (i) \((1.7/2.7) \times 747 \text{ cm}^3/24,000 \text{ cm}^3 = 0.0196 \text{ mol of H}_2 \) \hspace{1cm} \frac{1}{2}

 (ii) \((1/2.7) \times 747 \text{ cm}^3/24,000 \text{ cm}^3 = 0.0115 \text{ mol of CO} \) \hspace{1cm} \frac{1}{2}

(f) \((26 \times 60 \times 3.6 \times 10^3) \text{ J} + (34 \times 60 \times 0.80 \times 10^3) \text{ J} = 7,248 \text{ kJ} \) \hspace{1cm} 1

(g) (i) \(0.0196 \text{ mol} \times -286 \text{ kJ mol}^{-1} + 0.0115 \text{ mol} \times -283 \text{ kJ mol}^{-1} \)
 \[= -8.87 \text{ kJ} \]
 \text{Accept if magnitude is correct but minus sign is missing. Allow error carried forward from part (e).} \hspace{1cm} 1

 (ii) \(8.87 \text{ kJ} / 7248 \text{ kJ} = 0.12\% \)
 \text{Allow error carried forward from (f) and/or (g)(i).} \hspace{1cm} 1
(h) (i) From \(n=7 \) to \(n=8 \), 654 kJ mol\(^{-1}\) more heat energy evolved.

\[\Delta_c^\circ H \text{ for } n=12 = -5470 - (4 \times 654 \text{ kJ mol}^{-1}) = -8086 \text{ kJ mol}^{-1} \]

(ii) \[
\begin{align*}
12 \text{ CO} + 25 \text{ H}_2 &\rightarrow C_{12}H_{26} + 12 \text{ H}_2\text{O} \\
12 \text{ CO}_2 + 25 \text{ H}_2\text{O} &\rightarrow
\end{align*}
\]

\[= (12 \times -283 \text{ kJ mol}^{-1}) + (25 \times -286 \text{ kJ mol}^{-1}) + 8,086 \text{ kJ mol}^{-1} \]

\[= -2,460 \text{ kJ mol}^{-1} \]

1 mark for correct construction of cycle and attempt at calculation with mathematical error. Allow error carried forward from (h)(i).